精英家教网 > 高中数学 > 题目详情
1.化简:$\frac{sin(4π-α)cos(\frac{9π}{2}+α)}{sin(\frac{11π}{2}+α)cos(2π-α)}$-$\frac{tan(5π-α)}{sin(3π-α)sin(\frac{π}{2}+α)}$.

分析 利用诱导公式以及同角三角函数基本关系式化简求解即可.

解答 解:$\frac{sin(4π-α)cos(\frac{9π}{2}+α)}{sin(\frac{11π}{2}+α)cos(2π-α)}$-$\frac{tan(5π-α)}{sin(3π-α)sin(\frac{π}{2}+α)}$=$\frac{sin(-α)(-sinα)}{(-cosα)cos(-α)}-\frac{-tanα}{sinαcosα}$=$\frac{{si{n^2}α}}{{-{{cos}^2}α}}+\frac{1}{{co{s^2}α}}$=$\frac{{1-si{n^2}α}}{{{{cos}^2}α}}=1$.

点评 本题考查诱导公式以及同角三角函数基本关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知椭圆P:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左顶点为M,上顶点为N,直线MN的斜率为$\frac{{\sqrt{3}}}{2}$,坐标原点O到直线MN的距离为$\frac{{2\sqrt{21}}}{7}$.
(Ⅰ)求椭圆P的方程;
(Ⅱ)已知正方形ABCD的顶点A、C在椭圆P上,顶点B、D在直线7x-7y+1=0上,求该正方形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设复数z满足$\frac{2}{z}$=1+i,则z=(  )
A.1+iB.1-iC.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.三点A(1,-1),B(1,4),C(4,-2).求△ABC的外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数$y=-2sin(\frac{1}{2}x+\frac{π}{4})$的周期,振幅,初相分别是(  )
A.$\frac{π}{4}$,2,$\frac{π}{4}$B.4π,-2,$-\frac{π}{4}$C.4π,2,$\frac{π}{4}$D.2π,2,$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.从某高中随机选取5名高一男生,其身高和体重的数据如表所示:
身高x(cm)160165170175180
身高y(kg)6366707274
根据上表可得回归直线方程$\widehat{y}$=0.56x+$\widehat{a}$据此模型预报身高为172cm的高一男生的体重为(  )
A.70.09B.70.12C.70.55D.71.05

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=sin2x-$\sqrt{3}$sinxcosx+$\frac{1}{2}$,g(x)=mcos(x+$\frac{π}{3}$)-m+2.若对任意的x1,x2∈[0,π],均有f(x1)≥g(x2),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.以下说法正确的是④_.(填写所有正确命题的序号)
①不等式$\frac{x+8}{{x}^{2}+2x+3}$<2 与不等式$\frac{{x}^{2}+2x+3}{x+8}$>$\frac{1}{2}$ 解集相同;
②已知命题p:“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”,命题q:“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价,则p∨q为真命题,p∧q为假命题;
③命题“$?{x_0}∈R,{2^{x_0}}≤0$”的否定是“?x∉R,2x>0”;
④已知幂函数y=f(x)的图象经过点(4,$\frac{1}{2}$),则$f(2)=\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{3}$x3-4x+m,(m∈R).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在[0,3]上的最值.

查看答案和解析>>

同步练习册答案