精英家教网 > 高中数学 > 题目详情
9.三点A(1,-1),B(1,4),C(4,-2).求△ABC的外接圆的方程.

分析 设出圆的方程为x2+y2+Dx+Ey+F=0,把A(1,-1),B(1,4),C(4,-2).带入求出D,E,F可得△ABC的外接圆的方程.

解答 解:由题意,设圆的方程为x2+y2+Dx+Ey+F=0,
∵A(1,-1),B(1,4),C(4,-2)在圆上,
∴$\left\{\begin{array}{l}{2+D-E+F=0}\\{17+D+4E+F=0}\\{20+4D-2E+F=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{D=-7}\\{E=-3}\\{F=2}\end{array}\right.$.
∴△ABC的外接圆的方程为x2+y2-7x-3y+2=0.

点评 本题考查的知识要点:圆的一般方程的求法.属于基础题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.假设佛罗里达州某镇有居民2400人,其中白人有1200人,黑人800人,华人200人,其他有色人种200人,为了调查奥马巴政府在该镇的支持率,现从中选取一个容量为120人的样本,按分层抽样,白人、黑人、华人、其他有色人种分别抽取的人数(  )
A.60,40,10,10B.65,35,10,10C.60,30,15,15D.55,35,15,15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.$设α,β都为锐角,sinα=\frac{1}{3},cosβ=\frac{4}{5},则sin(α+β)$=$\frac{4+6\sqrt{2}}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD为边长为2的菱形,∠DAB=60°,△PAD为正三角形,PB=$\sqrt{6}$.
(1)证明:平面PAD⊥平面ABCD;
(2)E为线段PB上的点,平面PAD与平面ACE所成锐二面角为30°,$\overrightarrow{PE}$=λ$\overrightarrow{PB}$,求出λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β为非零常数,若f(2006)=-1,则f(2007)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为$\frac{\sqrt{3}}{2}$,过焦点垂直长轴的弦长为1.
(I)求椭圆E的方程;
(II)椭圆E的右焦点为F,⊙O:x2+y2=1的切线MN与椭圆E交于M,N两点(均在y轴的右侧),求△MNF内切圆的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.化简:$\frac{sin(4π-α)cos(\frac{9π}{2}+α)}{sin(\frac{11π}{2}+α)cos(2π-α)}$-$\frac{tan(5π-α)}{sin(3π-α)sin(\frac{π}{2}+α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为y=±2$\sqrt{2}$x,则该双曲线的离心率为(  )
A.$\frac{{3\sqrt{2}}}{2}$B.$\frac{{2\sqrt{2}}}{3}$C.3D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知点P为直线y=x+1上的一点,M,N分别为圆C1:(x-4)2+(y-1)2=4与圆C2:x2+(y-2)2=1上的点,则|PM|-|PN|的最大值为(  )
A.4B.5C.6D.7

查看答案和解析>>

同步练习册答案