分析 根据同角的三角函数关系和两角和的正弦公式,计算即可.
解答 解:α,β为锐角,且sinα=$\frac{1}{3}$,cosβ=$\frac{4}{5}$,
∴cosα=$\sqrt{1{-(\frac{1}{3})}^{2}}$=$\frac{2\sqrt{2}}{3}$,
sinβ=$\sqrt{1{-(\frac{4}{5})}^{2}}$=$\frac{3}{5}$,
∴sin(α+β)=sinαcosβ+cosαsinβ
=$\frac{1}{3}$×$\frac{4}{5}$+$\frac{2\sqrt{2}}{3}$×$\frac{3}{5}$
=$\frac{4+6\sqrt{2}}{15}$.
故答案为:$\frac{4+6\sqrt{2}}{15}$.
点评 本题考查了同角的三角函数关系与两角和的正弦公式问题,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0<a<b<1<c<d | B. | 0<b<a<1<d<c | C. | 0<b<a<1<c<d | D. | 1<a<b<c<d |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com