精英家教网 > 高中数学 > 题目详情
4.设f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β为非零常数,若f(2006)=-1,则f(2007)=(  )
A.-1B.0C.1D.2

分析 利用诱导公式化简求解即可.

解答 解:f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β为非零常数,f(2006)=-1,
可得f(2006)=asin(2006π+α)+bcos(2006π+β)=asinα+bcosβ=-1,
则f(2007)=asin(2007π+α)+bcos(2007π+β)=-asinα-bcosβ=1,
故选:C.

点评 本题考查诱导公式的应用,三角函数化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.(1)已知f(x)是偶函数,x≥0时,f(x)=-2x2+4x,求x<0时f(x)的解析式.
(2)已知函数f(x)=x2+3x-5,x∈[t,t+1],若f(x)的最小值为h(t),写出h(t)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知不等式组$\left\{\begin{array}{l}{x-y+6≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$.
(1)求此不等式组表示的平面区域的面积;
(2)求z1=2x-3y的最大值;
(3)求${z_2}=\frac{y+3}{x+1}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设复数z满足$\frac{2}{z}$=1+i,则z=(  )
A.1+iB.1-iC.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知α,β为锐角,且cos(α+β)=-$\frac{3}{5}$,sin(α-β)=-$\frac{5}{13}$,则sin2a=(  )
A.$\frac{33}{65}$B.-$\frac{63}{65}$C.$\frac{63}{65}$D.-$\frac{33}{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.三点A(1,-1),B(1,4),C(4,-2).求△ABC的外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数$y=-2sin(\frac{1}{2}x+\frac{π}{4})$的周期,振幅,初相分别是(  )
A.$\frac{π}{4}$,2,$\frac{π}{4}$B.4π,-2,$-\frac{π}{4}$C.4π,2,$\frac{π}{4}$D.2π,2,$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=sin2x-$\sqrt{3}$sinxcosx+$\frac{1}{2}$,g(x)=mcos(x+$\frac{π}{3}$)-m+2.若对任意的x1,x2∈[0,π],均有f(x1)≥g(x2),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=3sin(2x+5θ)为偶函数时,θ取值的集合是{θ|θ=$\frac{π}{10}$+$\frac{kπ}{5}$,k∈Z}.

查看答案和解析>>

同步练习册答案