精英家教网 > 高中数学 > 题目详情
8.如图,梯形ABCD中,DC∥AB,AD=DC=CB=2,AB=4,矩形AEFC中,AE=$\sqrt{3}$,平面AEFC⊥平面ABCD,点G是线段EF的中点
(Ⅰ)求证:AG⊥平面BCG
(Ⅱ)求二面角D-GC-B的余弦值.

分析 (Ⅰ)根据线面垂直的判定定理证明AG⊥CG,即可证明AG⊥平面BCG
(Ⅱ)建立空间直角坐标系,利用向量法即可求二面角D-GC-B的余弦值.

解答 (Ⅰ)证明:在梯形ABCD中,因为AD=DC=CB=2,AB=4,所以∠ABC=60°,
由余弦定理求得AC=2$\sqrt{3}$,
从而∠ACB=90°,
即BC⊥AC,
又因为平面AEFC⊥平面ABCD,
所以BC⊥平面AEFC,
所以BC⊥AG,
在矩形AEFC中,tan∠AGE=$\frac{AE}{EG}=1$,
则∠AGE=$\frac{π}{4}$,
tan∠CGF=$\frac{CF}{GF}=1$,则∠CGF=$\frac{π}{4}$,
所以∠CGF+∠AGE=$\frac{π}{2}$,
即AG⊥CG,
所以AG⊥平面BCG;
(Ⅱ)FC⊥AC,平面AEFC⊥平面ABCD,
所以FC⊥平面ABCD,
以点C为原点,CA,CB,CF所在直线分别为x轴,y轴,z轴建立空间直角坐标系,
则C(0,0,0),A(2$\sqrt{3}$,0,0),B(0,2,0),D($\sqrt{3}$,-1,0),G($\sqrt{3}$,0,$\sqrt{3}$),
平面BCG的法向量$\overrightarrow{GA}$=($\sqrt{3}$,0,-$\sqrt{3}$),
设平面GCD的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CG}=0}\\{\overrightarrow{n}•\overrightarrow{CD}=0}\end{array}\right.$,从而$\left\{\begin{array}{l}{x+z=0}\\{\sqrt{3}x-y=0}\end{array}\right.$,
令x=1,则y=$\sqrt{3}$,z=-1,
则$\overrightarrow{n}$=(1,$\sqrt{3}$,-1),
所以cos<$\overrightarrow{n}$,$\overrightarrow{GA}$>=$\frac{2\sqrt{3}}{\sqrt{3+3}•\sqrt{1+3+1}}$=$\frac{\sqrt{10}}{5}$,
而二面角D-GCB为钝角,
故所求二面角的余弦值为-$\frac{\sqrt{10}}{5}$.

点评 本题主要考查空间线面垂直的判定,以及二面角的求解,利用向量法是解决二面角的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=alnx+$\frac{1-a}{2}$x2-(b+1)x(a为实常数,且a≠1),曲线y=f(x)在点(2,f(2))处的切线的斜率为1-$\frac{3}{2}$a.
(1)求实数b的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设数列{an}的前n项积为Tn,且Tn=2-2an
(1)求数列{an}的通项公式;
(2)设bn=(1-an)(1-an+1),数列{bn}的前n项和为Sn,求证:$\frac{1}{12}$≤Sn<$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=e${\;}^{\frac{{x}^{2}}{a}}$-ax有且只有一个零点,则实数a的取值范围为(-∞,0)∪{$\root{3}{2e}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将函数y=sin(2x-$\frac{π}{3}$)的图象向左移动$\frac{π}{3}$个单位,得到函数y=f(x)的图象,则函数y=f(x)的一个单调递增区间是(  )
A.[-$\frac{π}{4}$,$\frac{π}{4}$]B.[-$\frac{π}{2}$,0]C.[-$\frac{5π}{12}$,$\frac{π}{12}$]D.[$\frac{π}{12}$,$\frac{7π}{12}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,在四棱锥中A-BCDE中,AE⊥面EBCD,且四边形EBCD是菱形,∠BED=120°,AE=BE=2,F是BC上的动点(不包括端点).
(1)当F是BC的中点时,求点F到面ACD的距离;
(2)当F在由B向C移动的过程中,能否存在一个位置使得二面角F-AD-C的余弦值为$\frac{15}{\sqrt{231}}$?若存在,求出BF的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l1∥l2,在l1上取三点,l2上取两点,求由这五个点能确定平面的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}+2\overrightarrow{b}$|=(  )
A.2B.$\sqrt{10}$C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设{an}是等差数列,{bn}是各项都为正整数的等比数列,且a1=b1=1,a13b2=50,a8+b2=a3+a4+5,n∈N*
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)若数列{dn}满足${d_n}{d_{n+1}}={(\frac{1}{2})^{-8+{{log}_2}{b_{n+1}}}}$(n∈N*),且d1=16,试求{dn}的通项公式及其前2n项和S2n

查看答案和解析>>

同步练习册答案