5£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ô²MµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+2cost}\\{y=-2+2sint}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬ÒÔxÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$\sqrt{2}$¦Ñsin£¨¦È-$\frac{¦Ð}{4}$£©=m£¬£¨m¡ÊR£©£¬ÈôÖ±ÏßlÓëÔ²MÏཻÓÚA£¬BÁ½µã£¬¡÷MABµÄÃæ»ýΪ2£¬ÔòmֵΪ£¨¡¡¡¡£©
A£®-1»ò3B£®1»ò5C£®-1»ò-5D£®2»ò6

·ÖÎö Ô²MµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+2cost}\\{y=-2+2sint}\end{array}\right.$£¨tΪ²ÎÊý£©£¬»¯ÎªÆÕͨ·½³Ì£º£¨x-1£©2+£¨y+2£©2=4£®Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$\sqrt{2}$¦Ñsin£¨¦È-$\frac{¦Ð}{4}$£©=m£¬Õ¹¿ª¿ÉµÃ£º$\sqrt{2}¦Ñ¡Á\frac{\sqrt{2}}{2}$£¨sin¦È-cos¦È£©=m£¬ÀûÓû¥»¯¹«Ê½»¯ÎªÖ±Ïß·½³Ìx-y+m=0£®¿ÉµÃÔ²ÐÄMµ½Ö±ÏßlµÄ¾àÀëd£®ÒÑÖª¡÷MABµÄÃæ»ýΪ2£¬¿ÉµÃ$\frac{1}{2}¡Á$|AB|¡Ád=2£®ÓÖ|AB|=2d£¬¿ÉµÃ$\frac{1}{2}¡Á2\sqrt{4-{d}^{2}}$¡Ád=2£¬½âµÃd£¬m£®

½â´ð ½â£ºÔ²MµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+2cost}\\{y=-2+2sint}\end{array}\right.$£¨tΪ²ÎÊý£©£¬»¯ÎªÆÕͨ·½³Ì£º£¨x-1£©2+£¨y+2£©2=4£¬¿ÉµÃM£¨1£¬-2£©£¬°ë¾¶r=2£®
Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$\sqrt{2}$¦Ñsin£¨¦È-$\frac{¦Ð}{4}$£©=m£¬Õ¹¿ª¿ÉµÃ£º$\sqrt{2}¦Ñ¡Á\frac{\sqrt{2}}{2}$£¨sin¦È-cos¦È£©=m£¬»¯Îª£ºy-x-m=0£¬¼´x-y+m=0£®
¡àÔ²ÐÄMµ½Ö±ÏßlµÄ¾àÀëd=$\frac{|1+2+m|}{\sqrt{2}}$=$\frac{|3+m|}{\sqrt{2}}$£®
¡ß¡÷MABµÄÃæ»ýΪ2£¬¡à$\frac{1}{2}¡Á$|AB|¡Á$\frac{|3+m|}{\sqrt{2}}$=2£®
ÓÖ|AB|=2$\sqrt{4-£¨\frac{3+m}{\sqrt{2}}£©^{2}}$£¬¡à$\frac{1}{2}¡Á2\sqrt{4-{d}^{2}}$¡Ád=2£¬
½âµÃd=$\sqrt{2}$£®
¡à$\frac{|3+m|}{\sqrt{2}}$=$\sqrt{2}$£¬½âµÃm=-1»ò-5£®
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ö±ÏßÓëÔ²ÏཻÏÒ³¤¹«Ê½¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÔÚ¡÷ABCÖУ¬$\overrightarrow{AB}=\overrightarrow c$£¬$\overrightarrow{AC}=\overrightarrow b$£®ÈôµãDÂú×ã$\overrightarrow{CD}=2\overrightarrow{DB}$£¬Ôò$\overrightarrow{AD}$=£¨¡¡¡¡£©
A£®$\frac{2}{3}\overrightarrow b+\frac{1}{3}\overrightarrow c$B£®$\frac{1}{3}\overrightarrow b+\frac{2}{3}\overrightarrow c$C£®$\frac{2}{3}$$\overrightarrow{b}$-$\frac{1}{3}$$\overrightarrow{c}$D£®$\frac{1}{3}\overrightarrow b-\frac{2}{3}\overrightarrow c$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬¹ýµãF2ÇÒбÂÊΪ$\frac{2b}{a}$µÄÖ±Ïßl½»Ö±Ïß2bx+ay=0ÓÚM£¬ÈôMÔÚÒÔÏß¶ÎF1F2Ϊֱ¾¶µÄÔ²ÉÏ£¬ÔòÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªº¯Êýy=$\frac{lnx}{x}$Ôڵ㣨m£¬f£¨m£©£©´¦µÄÇÐÏ߯½ÐÐÓÚxÖᣬÔòʵÊým=e£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=sin£¨¦Øx+¦Õ£©$£¨¦Ø£¾0£¬|¦Õ|£¼\frac{¦Ð}{2}£©$£¬ÆäͼÏóÏàÁÚÁ½¶Ô³ÆÖáÖ®¼äµÄ¾àÀëΪ$\frac{¦Ð}{2}$£¬ÇÒº¯Êý$f£¨x+\frac{¦Ð}{12}£©$ÊÇżº¯Êý£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®f£¨x£©ÔÚ$[{\frac{3¦Ð}{4}£¬¦Ð}]$Éϵ¥µ÷µÝÔöB£®f£¨x£©µÄ×îСÕýÖÜÆÚΪ2¦Ð
C£®f£¨x£©µÄͼÏó¹ØÓÚµã$£¨\frac{7¦Ð}{12}£¬0£©$¶Ô³ÆD£®f£¨x£©µÄͼÏó¹ØÓÚÖ±Ïß$x=-\frac{7¦Ð}{12}$¶Ô³Æ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÈçͼËùʾ£¬ÔÚ?ABCDÖУ¬AE£ºEB=1£º2£¬ÈôS¡÷AEF=6cm2£¬ÔòS¡÷CDFΪ£¨¡¡¡¡£©
A£®54cm2B£®24cm2C£®18cm2D£®12cm2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÔÚ¡÷ABCÖУ¬BC=4£¬AB=$\sqrt{2}$AC£¬Ôò¡÷ABCÃæ»ýµÄ×î´óֵΪ8$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªf£¨x£©=x2£®
£¨1£©½â²»µÈʽ|f£¨x£©-1|+|f£¨x£©-3|¡Ý8£»
£¨2£©Èô${x_1}£¬{x_2}¡Ê£¨-\frac{3}{2}£¬\frac{3}{2}£©$£¬¶ÔÓڦţ¾0£¬Ö¤Ã÷£ºµ±|x1-x2|£¼¦Åʱ£¬|f£¨x1£©-f£¨x2£©|£¼3¦Å£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬a3£¬a7ÊÇ·½³Ì2x2-12x+c=0µÄÁ½¸ù£¬ÇÒS13=c£¬ÔòÊýÁÐ{an}µÄ¹«²îΪ$-\frac{3}{2}$»ò$-\frac{7}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸