分析 设AC=x,则AB=$\sqrt{2}$x,根据面积公式得S△ABC=2xsinC,由余弦定理求得 cosC代入化简 S△ABC=$\frac{1}{4}$$\sqrt{2048-({x}^{2}-48)^{2}}$,由三角形三边关系求得4$\sqrt{2}$-4<x<4$\sqrt{2}$+4,由二次函数的性质求得S△ABC取得最大值.
解答 解:设AC=x,则AB=$\sqrt{2}$x,根据面积公式得S△ABC=$\frac{1}{2}$AC•BC•sinC=$\frac{1}{2}$•x•4•sinC=2xsinC,
由余弦定理可得 cosC=$\frac{16-{x}^{2}}{8x}$,
∴S△ABC=2x$\sqrt{1-co{s}^{2}C}$=2x$\sqrt{1-(\frac{16-{x}^{2}}{8x})^{2}}$=$\frac{1}{4}$$\sqrt{2048-({x}^{2}-48)^{2}}$.
由三角形三边关系有:x+$\sqrt{2}$x>4且x+4>$\sqrt{2}$x,解得 4$\sqrt{2}$-4<x<4$\sqrt{2}$+4,
故当 x=4$\sqrt{3}$时,S△ABC取得最大值8$\sqrt{2}$,
故答案为:8$\sqrt{2}$.
点评 本题主要考查了余弦定理和面积公式在解三角形中的应用.当涉及最值问题时,可考虑用函数的单调性和定义域等问题,计算量较大,考查了转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 若α>β,则sinα>sinβ | |
| B. | 命题:“?x>1,x2>1”的否定是“?x≤1,x2≤1” | |
| C. | 已知函数f(x)=x3+ax2+bx+c,若f(x)在区间(-1,0)上单调递减,则a2+b2的取值范围为$[{\frac{9}{5},+∞})$ | |
| D. | “若xy=0,则x=0或y=0”的逆否命题为“若x≠0或y≠0,则xy≠0” |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1或3 | B. | 1或5 | C. | -1或-5 | D. | 2或6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com