精英家教网 > 高中数学 > 题目详情
在矩形ABCD中,AB=1,BC=
2
,PA⊥平面ABCD,PA=1,则PC与平面ABCD所成角是
 
考点:直线与平面所成的角
专题:计算题,空间角
分析:由PA⊥平面ABCD,可得PC与平面ABCD所成角为∠PCA,在直角△PCA中,即可求出PC与平面ABCD所成角.
解答: 解:∵PA⊥平面ABCD
∴PC与平面ABCD所成角为∠PCA,
∵矩形ABCD中,AB=1,BC=
2

∴AC=
3

∵PA=1,
∴tan∠PCA=
1
3
=
3
3

∴∠PCA=30°.
故答案为:30°
点评:本题考查的知识点是直线与平面所成的角,确定∠PCA即为直线PC与底面ABCD所成角是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某同学将一块底边长为5的等腰直角三角板按如图所示的方式放置在平面直角坐标系上,其中∠OMN=
π
2
,函数f(x)=Asin(ωx),(A>0,ω>0),
(1)若函数f(x)在同一周期内的图象过点O,M,N,求函数f(x)的解析式;
(2)若将该三角板绕原点按逆时针方向旋转角α(0<α<
π
2
)
时;顶点M′,N′恰好同时落在曲线y=
k
x
(x≠0)上,求实数k的值;
(3)若当x∈[0,π]时,函数f(x)的图象恰好都落在△OMN内(允许落在△OMN的边界上),求当么取最大值时,函数g(x)=cos(ωx+A)在区间[0,π]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}的前项和为Sn,且满足Sn+an=1.
(1)求数列{an}的通项公式;
(2)设cn=
1
an
,数列{bn},满足b1c1+b2c2+…+bncn=(2n-1)2n+1+2,求出数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|x2+4x=0},B={x|x2+2(m+1)x+m2-1=2}
(1)若A∩B≠∅,求m的范围;
(2)若A∪B=B,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E为AB的中点.
(Ⅰ)设正方体ABCD-A1B1C1D1 的棱长等于2,求三棱锥C-BED1的体积;
(Ⅱ)求证:平面EB1D⊥平面B1CD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角梯形PBCD,A是PD边上的中点(如图甲),∠D=∠C=
π
2
,BC=CD=2,PD=4,将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,且
SE
=
1
3
SD
,(如图乙)
(1)求证:SA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数1,3,6,10,15,21…,这些数量的石子,都可以排成三角形,像这样的数称为三角形数.如图所示:

将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn}.可以推测:
(Ⅰ)b2014是数列{an}中的第
 
项;   
(Ⅱ)b2k-1=
 
.(用k表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对大于或等于2的自然数m的n次方幂,有如下分解方式23=3+5,33=7+9+11,43=13+15+17+19,根据以上规律,若m3,(m∈N+)的分解式中最小的数是21,则m=
 

查看答案和解析>>

同步练习册答案