精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)的导函数为f′(x),若x2f′(x)+xf(x)=sinx(x∈(0,6),f(π)=2,则下列结论正确的是(  )
A.xf(x)在(0,6)单调递减B.xf(x)在(0,6)单调递增
C.xf(x)在(0,6)上有极小值2πD.xf(x)在(0,6)上有极大值2π

分析 设g(x)=xf(x),得到g′(x)=[xf(x)]′=$\frac{sinx}{x}$,解关于导函数的不等式,求出函数的单调区间,得到函数的极大值,从而求出答案.

解答 解:∵x2f′(x)+xf(x)=sinx(x∈(0,6),
∴xf′(x)+f(x)=$\frac{sinx}{x}$,
设g(x)=xf(x),则g′(x)=[xf(x)]′=$\frac{sinx}{x}$,
由g′(x)>0,解得:0<x<π,g′(x)<0,解得:π<x<6,
∴x=π时,函数g(x)=xf(x)取得最大值g(π)=πf(π)=2π,
故选:D.

点评 本题考查了函数的单调性、极值问题,考查导数的应用,构造函数g(x)=xf(x)是解题的关键,本题是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知命题p:?x∈R,x2+2x+m≤0,命题q:指数函数f(x)=(3-m)x是增函数,若“p∨q”为真命题,“p∧q”为假命题,则实数m的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.10101010 (2)=170 (10)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)已知tan($\frac{π}{4}$+α)=$\frac{1}{2}$;求$\frac{sinα-cosα}{sinα+cosα}$的值.
(2)求sin$\frac{π}{12}$•sin$\frac{5π}{12}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在长方体ABCD-A1B1C1D1中,AA1=1,AB=AD=2,E,F分别是棱AB,BC的中点.证明A1,C1,F,E四点共面,并求直线CD1与平面A1C1FE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.从某工厂生产的某产品中抽取500件,测量这些产品的一项质量指标,由测量结果得到下列频数分布表:
指标值分组[75,85)[85,95)[95,105)[105,115)[115,125]
频数3012021010040
(1)作出这些数据的频率分布直方图,并估计该产品质量指标值的平均数$\overline x$及方差s2(同一组中的数据用该组的中点值作代表);
(2)可以认为这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数$\overline x$,σ2.近似为样本方差s2; 一件产品的质量指标不小于110时该产品为优质品;利用该正态分布,计算这种产品的优质品率p(结果保留小数点后4位).
(以下数据可供使用:若Z~N(μ,δ2),则P(μ-δ<ξ<μ+δ)=68.26%,P(μ-2δ<ξ<μ+2δ)=95.44%)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某流程如图所示,现输入四个函数,则可以输出的函数是(  )
A.f(x)=xtanxB.f(x)=xexC.f(x)=x+2lnxD.f(x)=x-sinx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知扇形的周长为20cm,当扇形的中心角为2弧度时,它有最大面积,最大面积是25cm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出以下四个命题:
①若$\frac{1}{a}$<$\frac{1}{b}$<0,则$\frac{b}{a}$+$\frac{a}{b}$>2;
②若a>b,则am2>bm2
③在△ABC中,若sinA=sinB,则A=B;
④任意x∈R,都有ax2-ax+1≥0,则0<a≤4.
其中是真命题的有(  )
A.①②B.②③C.①③D.③④

查看答案和解析>>

同步练习册答案