分析 分别求出命题p,q成立的m的范围,通过讨论p,q的真假,求出m的范围即可.
解答 解:命题p:?x∈R,x2+2x+m≤0,△=4-4m≥0,解得:m≤1,
故命题p:m≤1,
命题q:指数函数f(x)=(3-m)x是增函数,3-m>1,解得:m<2,
故命题q:m<2,
若“p∨q”为真命题,“p∧q”为假命题,
∴$\left\{\begin{array}{l}{m≤1}\\{m≥2}\end{array}\right.$或$\left\{\begin{array}{l}{m>1}\\{m<2}\end{array}\right.$,解得:1<m<2,
则实数m的范围是:(1,2),
故答案为:(1,2).
点评 本题考查了复合命题的判断,考查二次函数以及指数函数的性质,是一道基础题.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{12}{25}$ | B. | -$\frac{24}{25}$ | C. | $\frac{12}{25}$ | D. | $\frac{24}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | xf(x)在(0,6)单调递减 | B. | xf(x)在(0,6)单调递增 | ||
| C. | xf(x)在(0,6)上有极小值2π | D. | xf(x)在(0,6)上有极大值2π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com