精英家教网 > 高中数学 > 题目详情
19.(1)求函数y=(3x+2)3的导函数;
(2)求函数y=x2lnx在x=1处的切线方程.

分析 (1)先将3x+2看作整体,根据复合函数的导数的运算即可求出所求导数;
(2)先求出函数y=x2lnx的导数,再根据导数求出切线斜率,用点斜式求出切线方程.

解答 解:(1)y=(3x+2)3的导函数y′=3(3x+2)2•3=81x2+108x+36;
(2)函数y=x2lnx的导函数为y′=2xlnx+x,
令y′=2xlnx+x中x=1,得切线的斜率k=2ln1+1=1,
令y=x2lnx中x=1,得y=0,
可得切点为(1,0),
所以切线方程为y-0=1(x-1)
即y=x-1.

点评 本题考查了导数的运算和导数的运用:研究曲线上某点切线方程,注意运用导数的几何意义,正确求导和运用点斜式方程是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.如图所示,执行程序框图,输出结果(  )
A.$\frac{5}{12}$B.$\frac{7}{12}$C.$\frac{11}{12}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=(x-a)ln(ax)(a>0且a≠1)的图象与x轴交于A(x1,0),B(x2,0)两点.
(1)设曲线y=f(x)在A,B处的切线的斜率分别为k1,k2,求证:k1+k2<0;
(2)设x0是f(x)的极值点,比较$\sqrt{{x}_{1}{x}_{2}}$,x0,$\frac{{x}_{1}+{x}_{2}}{2}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若曲线f(x)=x4-2x在点P处的切线垂直于直线x+2y+1=0,则点P的坐标为(1,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知半径为10的圆O中,弦AB的长为10,则弦AB所对的圆心角α为$\frac{π}{3}$(弧度表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.与不等式(x+3)(x-5)<0的解集相同的是(  )
A.$\left\{\begin{array}{l}x+3>0\\ x-5<0\end{array}\right.$B.$\left\{\begin{array}{l}x+3<0\\ x-5>0\end{array}\right.$C.$\left\{\begin{array}{l}x-5>0\\ x+3<0\end{array}\right.$D.$\left\{\begin{array}{l}x+3>0\\ x-5>0\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.sin80°cos40°+cos80°sin40°等于(  )
A.$-\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在平行四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,且|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,那么平行四边形ABCD 是(  )
A.平行四边形B.菱形C.矩形D.正方形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知命题p:?x∈R,x2+2x+m≤0,命题q:指数函数f(x)=(3-m)x是增函数,若“p∨q”为真命题,“p∧q”为假命题,则实数m的取值范围是(1,2).

查看答案和解析>>

同步练习册答案