分析 (1)求出函数的导数,得到k1+k2=2lna-a2+1,令g(x)=2lnx-x2+1,(x>0),根据函数的单调性证出g(x)<0,从而证出结论;
(2)作差得到f′$(\frac{{x}_{1}{+x}_{2}}{2})$-f′(x0)=ln$(\frac{{a}^{2}+1}{2})$+$\frac{2}{{a}^{2}+1}$-1,根据函数的单调性判断即可得到$\frac{{x}_{1}+{x}_{2}}{2}$>x0,同理得到$\sqrt{{x}_{1}{x}_{2}}$<x0即可得到结论.
解答 解:(1)由(x-a)ln(ax)=0,解得:x1=$\frac{1}{a}$,x2=a,
∴f′(x)=ln(ax)-$\frac{a}{x}$+1,
∴k1=f′(x1)=f′($\frac{1}{a}$)=-a2+1,k2=f′(x2)=f′(a)=2lna,
故k1+k2=2lna-a2+1,
令g(x)=2lnx-x2+1,(x>0),则g′(x)=$\frac{2(1-x)(1+x)}{x}$,
令g′(x)>0,解得:x<1,令g′(x)<0,解得:x>1,
∴g(x)在(0,1)递增,在(1,+∞)递减,
∴x>0且x≠1时,g(x)<g(1)=0,
故:k1+k2<0;
(2)令g(x)=f′(x)=ln(ax)-$\frac{a}{x}$+1,g′(x)=$\frac{1}{x}$+$\frac{a}{x^{2}}$>0,
∴f′(x)在(0,+∞)递增,
f′$(\frac{{x}_{1}{+x}_{2}}{2})$-f′(x0)=ln$(\frac{{a}^{2}+1}{2})$+$\frac{2}{{a}^{2}+1}$-1,
令h(x)=lnx+$\frac{1}{x}$-1,(x>0),则h′(x)=$\frac{x-1}{{x}^{2}}$,
令h′(x)>0,解得:x>1,令h′(x)<0,解得:0<x<1,
∴h(x)在(0,1)递减,在(1,+∞)递增,
∴h(x)≥h(1)=0,当且仅当x=1时“=”成立,
∵$\frac{{a}^{2}+1}{2}$>$\frac{1}{2}$且$\frac{{a}^{2}+1}{2}$≠1,
∴h$(\frac{{a}^{2}+1}{2})$=ln$(\frac{{a}^{2}+1}{2})$+$\frac{2}{{a}^{2}+1}$-1>0,
∴f′$(\frac{{x}_{1}{+x}_{2}}{2})$-f′(x0)>0,即f′$(\frac{{x}_{1}{+x}_{2}}{2})$>f′(x0),
∵f′(x)在(0,+∞)递增,∴$\frac{{x}_{1}+{x}_{2}}{2}$>x0,
f′($\sqrt{{{x}_{1}x}_{2}}$)-f′(x0)=f′(1)-f′(x0)=lna-a+1,
由h(x)≥h(1)=0,得:lnx≥1-$\frac{1}{x}$,ln$\frac{1}{x}$≥1-x,
∴lnx-x+1≤0,当且仅当x=1时“=”成立,
∵a>0且a≠1,∴lna-a+1<0,
∴f′($\sqrt{{{x}_{1}x}_{2}}$)-f′(x0)<0,即f′($\sqrt{{{x}_{1}x}_{2}}$)<f′(x0),
∵f′(x)在(0,+∞)递增,
∴$\sqrt{{x}_{1}{x}_{2}}$<x0
综上,$\sqrt{{x}_{1}{x}_{2}}$<x0<$\frac{{x}_{1}+{x}_{2}}{2}$.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明,考查转化思想,是一道综合题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (5,7) | B. | (1,$\sqrt{7}$) | C. | (1,$\sqrt{7}$)∪(5,7) | D. | ($\sqrt{7}$,5) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3π | B. | 5π | C. | 9π | D. | 12π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{12}{25}$ | B. | -$\frac{24}{25}$ | C. | $\frac{12}{25}$ | D. | $\frac{24}{25}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com