精英家教网 > 高中数学 > 题目详情
已知向量
a
=(sinx,sinx),
b
=(cosx,sinx)(x∈R),若函数f(x)=
a
b

(1)求f(x)的最小正周期;
(2)若x∈[0,π],求f(x)的单调递减区间.
考点:复合三角函数的单调性,平面向量数量积的坐标表示、模、夹角
专题:三角函数的图像与性质,平面向量及应用
分析:(1)先化简求得解析式f(x)=
2
2
sin(2x-
π
4
+
1
2
,根据周期公式可求f(x)的最小正周期;
(2)先求得2x-
π
4
∈[-
π
4
4
],由y=sinx的图象即可求得f(x)的单调递减区间.
解答: 解:(1)∵f(x)=
a
b
=sinxcosx+sin2x=
1
2
sin2x+
1-cos2x
2
=
2
2
sin(2x-
π
4
+
1
2

∴f(x)的最小正周期为π;
(2)当x∈[0,π]时,2x-
π
4
∈[-
π
4
4
],由y=sinx的图象知,2x-
π
4
∈[
π
2
2
],即x∈[
8
8
]时,f(x)单调递减,
∴f(x)的单调递减区间为[
8
8
].
点评:本题主要考查了平面向量数量积的坐标表示、模、夹角,复合三角函数的单调性,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求证:1+2cos2θ-cos2θ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD如图1所示,其三视图如图2所示,其中正视图和侧视图都是直角三角形,俯视图是矩形.其中E是PD的中点.
(Ⅰ)求此四棱锥的体积;
(Ⅱ)求证:PB∥平面ACE;
(Ⅲ)求证:AE⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
xlnx,x≥1
lnx
x
,0<x<1
,若{an}是公比大于0的等比数列,且a3a4a5=1,若f(a1)+f(a2)+…+f(a6)=2a1,则a1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

己知函数f(x)=
x2-ax,x≥-1
-2-(a+3)x,x<-1
,若对任意x1,x2∈R,当x1≠x2,都有f(x1)≠f(x2)成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若
FP
=4
FQ
,则|QO|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+xlnx.
(1)求这个函数的导函数;
(2)求这个函数在点x=1处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a4n-3=1,a4n-1=0,a2n=an,n∈N*,则a2013=
 
;a2014=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知递增的等差数列{an}满足a1=2,a22=a5+6,则an=
 

查看答案和解析>>

同步练习册答案