精英家教网 > 高中数学 > 题目详情
函数y=3x-x3在(0,+∞)上(  )
A.有最大值2B.有最小值2C.有最小值-2D.有最大值-2
y′=3-3x2=3(1+x)(1-x),
令y′=0解得x=1,-1,
当x<-1时,y′<0,当-1<x<1时,y′>0,当x>1时,y′<0,
所以y=3x-x3在(0,1)上递增,在(1,+∞)上递减,
所以当x=1时函数取得极大值,也为最大值,ymax=2,无最小值,
故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

方程x3-3x-m=0有且只有两个不同的实根,则实数m=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△AnBnCn中,记角An、Bn、Cn所对的边分别为an、bn、cn,且这三角形的三边长是公差为1的等差数列,若最小边an=n+1,则
lim
n→∞
Cn
=(  )
A.
π
2
B.
π
3
C.
π
4
D.
π
6

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ex-ax(e为自然对数的底数).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)如果对任意x∈[2,+∞),不等式f(x)>x+x2恒成立,求实数a的取值范围;
(Ⅲ)设n∈N*,求证:(
1
n
n+(
2
n
n+(
3
n
n+…+(
n
n
n
e
e-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
x2+2x+a
x
,x∈[1,+∞).
(1)当a=
1
2
时,判断证明f(x)的单调性并求f(x)的最小值;
(2)若对任意x∈[1,+∞),f(x)>1恒成立,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

f(x)=x3-
1
2
x2-2x+5
,若对任意x∈[0,2]都有f(x)<m成立,则m的取值范围为(  )
A.(7,+∞)B.(8,+∞)C.[7,+∞)D.(9,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

f(x)=
1
3
x3-4x+4
(1)求函数的极值
(2)求函数在区间(-3,4)上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3+bx2-2x在x=-2,x=1处取得极值.
①求函数f(x)的解析式;
②求函数f(x)在[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:函数f(x)=x3-6x+5,x∈R,
(1)求:函数f(x)的单调区间和极值;
(2)若关于x的方程f(x)=a有3个不同实根,求:实数a的取值范围;
(3)当x∈(1,+∞)时,f(x)≥k(x-1)恒成立,求:实数k的取值范围.

查看答案和解析>>

同步练习册答案