精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2-2x在x=-2,x=1处取得极值.
①求函数f(x)的解析式;
②求函数f(x)在[-3,3]上的最大值和最小值.
①∵f(x)=ax3+bx2-2x
∴f′(x)=3ax2+2bx-2…..(2分)
由题意知f′(-2)=0,f′(1)=0….(3分)
3a×4-4b-2=0
3a+2b-2=0
⇒a=
1
3
,b=
1
2
…..(5分)
所以f(x)=
1
3
x3+
1
2
x2-2x…..(7分)
②因为f(-2)=
1
3
(-2)3+
1
2
(-2)2-2×(-2)=
10
3

f(1)=
1
3
×13+
1
2
×12-2×1=-
7
6

f(-3)=
1
3
(-3)3+
1
2
(-3)2-2×(-3)=
3
2

f(3)=
1
3
×33+
1
2
×32
-2×3=
15
2
.….(11分)
所以:函数f(x)的最大值为
15
2
,最小值-
7
6
…(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=ex(sinx-cosx),x∈(0,2013π),则函数f(x)的极大值之和为(  )
A.
e(1-e2012π)
e-1
B.
eπ(1-e2012π)
1-e
C.
eπ(1-e1006π)
1-e
D.
eπ(1-e1006π)
1-eπ

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=3x-x3在(0,+∞)上(  )
A.有最大值2B.有最小值2C.有最小值-2D.有最大值-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x+
1
x-2

(1)当x>2时,求函数f(x)的最小值;
(2)当x≥4时,求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若函数f(x)=ax3+bx2+cx+d是奇函数,且f(x)极小值=f(-
3
3
)=-
2
3
9

(1)求函数f(x)的解析式;
(2)求函数f(x)在[-1,m](m>-1)上的最大值;
(3)设函数g(x)=
f(x)
x2
,若不等式g(x)•g(kx)≥k2-
1
k
(k>0)
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一出租车每小时耗油的费用与其车速的立方成正比,当车速为80km/h时,该车耗油的费用为8元/h,其他费用为12元/h.甲乙两地的公路里程为160km,在不考虑其他因素的前提下,为了使该车开往乙地的总费用最低,该车的车速应当确定为多少公里/小时?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若规定
.
ab
cd
.
=ad-bc
,不等式
.
x+1x
mx-1
.
≥-2
对一切x∈(0,1]恒成立,则实数m的最大值为(  )
A.0B.2C.
5
2
D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数f(x)=
a
x
+lnx
,其中a为实常数.
(1)讨论f(x)的单调性;
(2)不等式f(x)≥1在x∈(0,1]上恒成立,求实数a的取值范围;
(3)若a=0,设g(n)=1+
1
2
+
1
3
+…+
1
n
,h(n)=
1
23
+
2
32
+
3
43
+…+
n-1
n3
(n≥2,n∈N+).是否存在实常数b,既使g(n)-f(n)>b又使h(n)-f(n+1)<b对一切n≥2,n∈N+恒成立?若存在,试找出b的一个值,并证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

统计表明某型号汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数为y=
1
128000
x3-
3
80
x+8(0<x<120)

(1)当x=64千米/小时时,要行驶100千米耗油量多少升?
(2)若油箱有22.5升油,则该型号汽车最多行驶多少千米?

查看答案和解析>>

同步练习册答案