【题目】已知数列是递减的等差数列,的前项和是,且,有以下四个结论:
①;
②若对任意都有成立,则的值等于7或8时;
③存在正整数,使;
④存在正整数,使.
其中所有正确结论的序号是
A. ①②B. ①②③
C. ②③④D. ①②③④
【答案】D
【解析】
由S6=S9,得到a7+a8+a9=0,利用等差数列的性质化简,得到a8=0,进而得到选项①正确;再由数列{an}是递减的等差数列以及a8=0,可得出当n等于7或8时,sn取最大值,选项②正确;利用等差数列的前n项和公式表示出S15,利用等差数列的性质化简后,将a8的值代入可得出S15=0,故存在正整数k,使Sk=0,选项③正确;当m=5时,表示出S10-S5,利用等差数列的性质化简后,将a8=0代入可得出S10-S5=0,即S10=S5 ,故存在正整数m,使Sm=S2m,选项④正确.
,,
由等差数列的性质,可得,,故结论①正确;
数列是递减的等差数列,,
当的值等于7或8时,取得最大值,故结论②正确;
又,则,存在正整数时,使,故结论③正确;
由等差数列的性质,可得,
存在正整数,使,故结论④正确.
故所有正确结论的序号是①②③④.故选D.
科目:高中数学 来源: 题型:
【题目】某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如下图所示:
(1)将去年的消费金额超过 3200 元的消费者称为“健身达人”,现从所有“健身达人”中随机抽取 2 人,求至少有 1 位消费者,其去年的消费金额超过 4000 元的概率;
(2)针对这些消费者,该健身机构今年欲实施入会制,详情如下表:
会员等级 | 消费金额 |
普通会员 | 2000 |
银卡会员 | 2700 |
金卡会员 | 3200 |
预计去年消费金额在内的消费者今年都将会申请办理普通会员,消费金额在内的消费者都将会申请办理银卡会员,消费金额在内的消费者都将会申请办理金卡会员. 消费者在申请办理会员时,需-次性缴清相应等级的消费金额.该健身机构在今年底将针对这些消费者举办消费返利活动,现有如下两种预设方案:
方案 1:按分层抽样从普通会员, 银卡会员, 金卡会员中总共抽取 25 位“幸运之星”给予奖励: 普通会员中的“幸运之星”每人奖励 500 元; 银卡会员中的“幸运之星”每人奖励 600 元; 金卡会员中的“幸运之星”每人奖励 800 元.
方案 2:每位会员均可参加摸奖游戏,游戏规则如下:从-个装有 3 个白球、 2 个红球(球只有颜色不同)的箱子中, 有放回地摸三次球,每次只能摸-个球.若摸到红球的总数消费金额/元为 2,则可获得 200 元奖励金; 若摸到红球的总数为 3,则可获得 300 元奖励金;其他情况不给予奖励. 规定每位普通会员均可参加 1 次摸奖游戏;每位银卡会员均可参加 2 次摸奖游戏;每位金卡会员均可参加 3 次摸奖游戏(每次摸奖的结果相互独立) .
以方案 2 的奖励金的数学期望为依据,请你预测哪-种方案投资较少?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点在轴上,中心在坐标原点,长轴长为4,短轴长为.
(1)求椭圆的标准方程;
(2)是否存在过的直线,使得直线与椭圆交于,?若存在,请求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关命题的说法正确的是( )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分条件
C.命题“若x=y,则sin x=sin y”的逆否命题为真命题
D.命题“x0∈R使得”的否定是“x∈R,均有x2+x+1<0”
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com