| A. | {x|x>1} | B. | {x|x<-1或x>1} | C. | {x|x<0或x>1} | D. | {x|x>0} |
分析 把不等式log2(1+$\frac{1}{x}$)<1化为log2(1+$\frac{1}{x}$)<log22,即0<1+$\frac{1}{x}$<2,求出它的解集即可.
解答 解:不等式log2(1+$\frac{1}{x}$)<1可化为log2(1+$\frac{1}{x}$)<log22,
即0<1+$\frac{1}{x}$<2,
等价于$\left\{\begin{array}{l}{1+\frac{1}{x}>0}\\{1+\frac{1}{x}<2}\end{array}\right.$;
解得$\left\{\begin{array}{l}{x<-1或x>0}\\{x<0或x>1}\end{array}\right.$,
即x<-1或x>1;
所以原不等式的解集为{x|x<-1或x>1}.
故选:B.
点评 本题考查了利用对数函数的单调性求不等式解集的应用问题,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{6}$或$\frac{5π}{6}$ | D. | $\frac{π}{3}$或$\frac{2π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com