【题目】已知二次函数.
(1)若的定义域和值域均是,求实数的值;
(2)若在区间上是减函数,求在区间上的最小值和最大值;
(3)若在区间上有零点,求实数的取值范围.
【答案】(1)(2)(3)
【解析】
(1)因为,即,在上单调递减,即可求得答案;
(2),其对称轴为且图象开口向上,又因为在区间上是减函数,根据二次函数图象可得:,故(注:更接近对称轴为),即可求得答案;
(3)因为在区间上有零点,分别讨论和,即可求得答案.
(1)
可化简为:,
根据二次函数知识可得:其对称轴为
在上单调递减,
则有,即
解得:
(2),其对称轴为且图象开口向上
又在区间上是减函数
根据二次函数图像可得:,
(注:更接近对称轴为)
又在上单调递减,在上单调递增:
(3)①当时,
,其对称轴为且图象开口向上
在区间是减函数
,
则在区间上无零点;
②当时,且在上单调递减,在上单调递增;
,
即
由上述知:.
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱 中,侧面和侧面都是矩形, 是边长为的正三角形, 分别为的中点.
(1)求证: 平面;
(2)求证:平面平面.
(3)若平面,求棱的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于区间[a,b](a<b),若函数同时满足:①在[a,b]上是单调函数,②函数在[a,b]的值域是[a,b],则称区间[a,b]为函数的“保值”区间
(1)求函数的所有“保值”区间
(2)函数是否存在“保值”区间?若存在,求的取值范围,若不存在,说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有4张牌(如图)每张牌的一面都写上一个英文字母,另一面都写上一个数字.规定:当牌的一面为字母时,它的另一面必须写数字2.你的任务是:为了检验下面的4张牌是否有违反规定的写法,你翻看哪几张牌就够了.你的选择是( ).
A. B. 、
C. 、 D. 非以上答案
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为测试特斯拉汽车的百米加速时间,研发人员记录了汽车在取、、、、、、时刻的位移,并对数据做了初步处理,得到图.同时,令,得到数据图,现画出与,与的散点图.
累加 | 累加 |
(1)根据散点图判断,与,与哪两个量之间线性相关程度更强?(直接给出判断即可);
(2)根据(1)的结果选择线性相关程度更强的两个量,建立相应的回归直线方程;
(3)根据(2)的结果预计特斯拉汽车百米加速需要的时间.
附:对于一组数据、、、,其回归直线的斜率和截距的最小二乘估计分别为:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,“六芒星”是由两个全等正三角形组成,中心重合于点且三组对边分别平行,点是“六芒星”(如图)的两个顶点,动点在“六芒星”上(内部以及边界),若,则的取值可能是( )
A.B.1C.5D.9
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com