【题目】为测试特斯拉汽车的百米加速时间,研发人员记录了汽车在取、、、、、、时刻的位移,并对数据做了初步处理,得到图.同时,令,得到数据图,现画出与,与的散点图.
累加 | 累加 |
(1)根据散点图判断,与,与哪两个量之间线性相关程度更强?(直接给出判断即可);
(2)根据(1)的结果选择线性相关程度更强的两个量,建立相应的回归直线方程;
(3)根据(2)的结果预计特斯拉汽车百米加速需要的时间.
附:对于一组数据、、、,其回归直线的斜率和截距的最小二乘估计分别为:,.
科目:高中数学 来源: 题型:
【题目】某学校高三年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在内,发布成绩使用等级制,各等级划分标准见下表.
百分制 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等级 | A | B | C | D |
规定:A,B,C三级为合格等级,D为不合格等级为了解该校高三年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计.
按照,,,,的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示
求n和频率分布直方图中的x,y的值,并估计该校高一年级学生成绩是合格等级的概率;
根据频率分布直方图,求成绩的中位数精确到;
在选取的样本中,从A,D两个等级的学生中随机抽取2名学生进行调研,求至少有一名学生是A等级的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用年的隔热层,每厘米厚的隔热层建造成本为万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:厘米)满足关系:.若不建隔热层,每年的能源消耗费用为万元.设为隔热层建造费用与年的能源消耗费用之和.
(1)求的值及的表达式;
(2)隔热层修建多厚时,总费用最小,并求其最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数.
(1)若的定义域和值域均是,求实数的值;
(2)若在区间上是减函数,求在区间上的最小值和最大值;
(3)若在区间上有零点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y2=4x的焦点为F,抛物线上有三个动点A,B,C.
(1)若,求;
(2)若,AB的垂直平分线经过一个定点Q,求△QAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数图象相邻两条对称轴的距离为,将函数的图象向左平移个单位后,得到的图象关于y轴对称则函数的图象( )
A. 关于直线对称 B. 关于直线对称
C. 关于点对称 D. 关于点对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:()的左、右焦点分别为,.椭圆C的长轴与焦距之比为,过的直线l与C交于A、B两点.
(1)求椭圆的方程;
(2)当l的斜率为1时,求的面积;
(3)当线段的垂直平分线在y轴上的截距最小时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:在轴上的一个焦点,与短轴两个端点的连线互相垂直,且右焦点坐标为.
(1)求椭圆的方程;
(2)设直线与圆相切,和椭圆交于,两点,为原点,线段,分别和圆交于,两点,设,的面积分别为,,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com