分析 设双曲线的左焦点为F',求出双曲线的a,b,c,运用双曲线的定义可得|PA|+|PF|=|PA|+|PF'|+2,考虑P在左支上运动到与A,F'共线时,取得最小值,即可得到所求值.
解答 解:设双曲线的左焦点为F',
由双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1,可得a=2,b=2$\sqrt{5}$,c=3,
即有F(3,0),F'(-3,0),|AF|=|AF'|=$\sqrt{9+216}$=15,
△APF周长为|PA|+|PF|+|AF|=|PA|+|PF|+15,
由双曲线的定义可得|PF|-|PF'|=2a=4,
即有|PA|+|PF|=|PA|+|PF'|+4,
当P在左支上运动到A,P,F'共线时,
|PA|+|PF'|取得最小值|AF'|=15,
则有△APF周长的最小值为15+15+4=34.
故答案为:34
点评 本题考查三角形的周长的最小值,注意运用双曲线的定义和三点共线时取得最小值,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 9 | C. | 2 | D. | 11 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 26 | B. | 24 | C. | 20 | D. | 18 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\frac{3}{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 一条直线 | B. | 一个平面 | C. | 两条平行直线 | D. | 两个平面 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com