精英家教网 > 高中数学 > 题目详情
7.已知三棱柱ABC-A1B1C1,侧棱AA1⊥底面ABC,AB=AC=AA1=2,∠BAC=90°,E,F分别是AB,BB1的中点,G为CC1上动点,当AF,EG所成角最小时,FG与平面AA1BB1所成角的余弦值为$\frac{\sqrt{5}}{3}$.

分析 以A为原点,以AC,AB,AA1为坐标轴建立空间直角坐标系,设G(2,0,a),求出AF,EG所成角的余弦关于a的函数,利用导数得出此函数的极大值点为a=0,即G与C重合.然后使用定义求出线面角的余弦值.

解答 解:以A为原点,以AC,AB,AA1为坐标轴建立空间直角坐标系,如图所示:
则A(0,0,0),E(0,1,0),F(0,2,1),设G(2,0,a),(0≤a≤2).
则$\overrightarrow{AF}$=(0,2,1),$\overrightarrow{EG}$=(2,-1,a).
∴$\overrightarrow{AF}•\overrightarrow{EG}$=a-2,|$\overrightarrow{AF}$|=$\sqrt{5}$,|$\overrightarrow{EG}$|=$\sqrt{5+{a}^{2}}$
∴cos<$\overrightarrow{AF}$,$\overrightarrow{EG}$>=$\frac{\overrightarrow{AF}•\overrightarrow{EG}}{|\overrightarrow{AF}||\overrightarrow{EG}|}$=$\frac{a-2}{\sqrt{5}•\sqrt{5+{a}^{2}}}$.
∴AF,EG所成角的余弦值为$\frac{2-a}{\sqrt{5}\sqrt{{a}^{2}+5}}$=$\frac{1}{\sqrt{5}}\sqrt{\frac{{a}^{2}-4a+4}{{a}^{2}+5}}$.
令f(a)=$\frac{{a}^{2}-4a+4}{{a}^{2}+5}$,则f′(a)=$\frac{4{a}^{2}+2a-20}{({a}^{2}+5)^{2}}$.
令f′(a)=0,解得a=-$\frac{5}{2}$或a=2.
∴当0≤a≤2时,f′(a)≤0,f(a)在[0,2]上是减函数.
∴当a=0时,f(a)取得最大值,即AF,EG所成角的余弦值最大,AF,EG所成角最小.
当a=0时,G与C重合.连结FC,则∠AFC为FG与平面AA1BB1所成的角.
∵BC=$\sqrt{2}$AC=2$\sqrt{2}$,AF=$\sqrt{5}$,CF=$\sqrt{B{C}^{2}+B{F}^{2}}$=3,
∴cos∠AFC=$\frac{AF}{CF}$=$\frac{\sqrt{5}}{3}$.
故答案为:$\frac{{\sqrt{5}}}{3}$.

点评 本题考查了空间角的计算,空间向量的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=\frac{{{x^2}-ax+b}}{e^x}$经过点(0,3),且在该点处得切线与x轴平行
(1)求a,b的值;
(2)若x∈(t,t+1),其中t>-2,讨论函数y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.为了得到函数y=3sin2x的图象,只要把y=3sin(2x+$\frac{π}{5}$)的图象上所有的点(  )
A.向左平移$\frac{π}{10}$个单位长度B.向右平移$\frac{π}{10}$个单位长度
C.向左平移$\frac{π}{5}$个单位长度D.向右平移$\frac{π}{5}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=\frac{1}{3}{x^3}+2a{x^2}+2$在区间[1,4]上是单调递增函数,则实数a的最小值是(  )
A.-1B.-4C.$-\frac{1}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,边a、b、c所对角分别为A、B、C,若$|\begin{array}{l}{a}&{sin(\frac{π}{2}+B)}\\{b}&{cosA}\end{array}|$=0,则△ABC的形状为等腰三角形或直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{x}{a}$-lnx(a≠0,a∈R).
(1)求函数f(x)的单调区间;
(2)若存在两个不相等的正数x1,x2,满足f(x1)=f(x2),求证:x1+x2>2a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,△ABC的外接圆半径为R,若C=$\frac{3π}{4}$,且sin(A+C)=$\frac{BC}{R}$•cos(A+B).
(1)证明:BC,AC,2BC成等比数列;
(2)若△ABC的面积是1,求边AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AB=AP,E为棱PD的中点
(Ⅰ)求直线AE与平面PBD所成角的正弦值;
(Ⅱ)若F为AB的中点,棱PC上是否存在一点M,使得FM⊥AC,若存在,求出$\frac{PM}{MC}$的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,内角A,B,C所对的边分别为a,b,c,若c=2,∠C=$\frac{π}{3}$,且sinC+sin(B-A)-2sin2A=0,下列命题正确的是②③④(写出所有正确命题的编号).
①b=2a;
②△ABC的周长为2+2$\sqrt{3}$;
③△ABC的面积为$\frac{{2\sqrt{3}}}{3}$;
④△ABC的外接圆半径为$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

同步练习册答案