精英家教网 > 高中数学 > 题目详情
7.在平面直角坐标系中,已知点A(1,1),B(0,1),则向量$\overrightarrow{AB}$的长度为1.

分析 利用向量的坐标运算或者有向线段的长度求法求之即可.

解答 解:在平面直角坐标系中,已知点A(1,1),B(0,1),则向量$\overrightarrow{AB}$=(-1,0),所以它的长度为1;
故答案为:1.

点评 本题考查了有向线段的长度求法;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{mx}{{x}^{2}+n}$(m,n∈R)在x=1处取得极值2.
(1)求f(x)的解析式;
(2)k为何值时,方程f(x)-k=0只有1个根
(3)设函数g(x)=x2-2ax+a,若对于任意x1∈R,总存在x2∈[-1,0],使得g(x2)≤f(x1),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.图中四个图案都是有小正三角形构成的,按此规律,第100个图案中所有小正三角形边上黑点的总数为(  )
A.2×104B.2×105C.3×104D.3×105

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.对某产品1至6月份销售量及其价格进行调查,其售价和销售量之间的一组数据如下表所示:
月份123456
单价x(元)99.51010.5118
销售量y(件)111086514
(1)根据1至5月份的数据,求出y关于x的回归直线方程;
(2)根据(1)的回归方程计算6月份的残差估计值;
(3)预计在今后的销售中,销售量与单价仍然服从(1)中的关系,且该产品的成本是2.5元/件,为获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)(参考数据:$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=392,$\sum_{i=1}^{5}{{x}_{i}}^{2}$=502.5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.f'(x)是函数f(x)=sin2x+3的导函数,在区间[-$\frac{π}{3}$,$\frac{2π}{3}$]上随机取一个数a,则f'(a)>$\sqrt{2}$的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{8}$C.$\frac{3}{8}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直线$\left\{\begin{array}{l}{x=1+tsin70°}\\{y=2+tcos70°}\end{array}\right.$(t为参数)的倾斜角为(  )
A.70°B.20°C.160°D.110°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设f(x)=5x2-5,则f′(1)等于(  )
A.0B.5C.10D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线y=-x与函数f(x)=-x3围成封闭图形的面积为(  )
A.1B.$\frac{1}{4}$C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow a=({-4,2})$,$\overrightarrow b=({1,3})$,则$|{\overrightarrow a-\overrightarrow b}|$=$\sqrt{26}$.

查看答案和解析>>

同步练习册答案