精英家教网 > 高中数学 > 题目详情
12.数列{an}满足a1+2a2+…+nan=4-$\frac{n+2}{{2}^{n-1}}$,n∈N*
(Ⅰ) 求a3的值;
(Ⅱ) 求数列{an}前n项和Tn
(Ⅲ)设${b_n}={log_{\frac{1}{2}}}{a_1}+{log_{\frac{1}{2}}}{a_2}+…+{log_{\frac{1}{2}}}{a_n}$,cn=$\frac{1}{{{b_{n+1}}}}$,求数列{cn}的前n项和.

分析 (1)可令n=1,2,3,计算即可得到所求值;
(2)当n≥2时,将n换为n-1,相减,即可得到所求通项公式;
(3)运用对数的运算性质,以及等差数列的求和公式,化简可得bn=$\frac{n(n-1)}{2}$,故cn=2($\frac{1}{n}$-$\frac{1}{n+1}$),再由裂项相消求和即可得到所求和.

解答 解:(Ⅰ)令n=1,得a1=1,
令n=2,有a1+2a2=2,得${a_2}=\frac{1}{2}$,
令n=3,有${a_1}+2{a_2}+3{a_3}=4-\frac{5}{4}$,得${a_3}=\frac{1}{4}$;
(Ⅱ)当n≥2时,${a_1}+2{a_2}+3{a_3}+…+(n-1){a_{n-1}}=4-\frac{n+1}{{{2^{n-2}}}}$,①${a_1}+2{a_2}+3{a_3}+…+(n-1){a_{n-1}}+n{a_n}=4-\frac{n+2}{{{2^{n-1}}}}$,②
②-①,得$n{a_n}=\frac{n+1}{{{2^{n-2}}}}-\frac{n+2}{{{2^{n-1}}}}=\frac{n}{{{2^{n-1}}}}$,
所以${a_n}=\frac{1}{{{2^{n-1}}}}$,
又当n=1时,a1=1也适合${a_n}=\frac{1}{{{2^{n-1}}}}$,
所以,${a_n}=\frac{1}{{{2^{n-1}}}}$(n∈N*);
(Ⅲ)${b_n}={log_{\frac{1}{2}}}{a_1}+{log_{\frac{1}{2}}}{a_2}+…+{log_{\frac{1}{2}}}{a_n}$=1+2+…+(n-1)=$\frac{n(n-1)}{2}$,
故${c_n}=\frac{1}{{{b_{n+1}}}}=\frac{2}{n(n+1)}=2(\frac{1}{n}-\frac{1}{n+1})$,则${c_1}+{c_2}+…+{c_n}=2((1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+…+(\frac{1}{n}-\frac{1}{n+1}))=\frac{2n}{n+1}$,
所以数列$\{\frac{1}{b_n}\}$的前n项和为$\frac{2n}{n+1}$.

点评 本题考查数列的通项和求和的求法,注意运用相减法,以及裂项相消求和法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知幂函数$y=({{m^2}-3m+3}){x^{{m^2}-m-1}}$在(0,+∞)单调递减,则实数m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.三棱锥A-BCD中,△BCD、△ACD均为边长为2的正三角形,侧棱$AB=\sqrt{3}$,现对其四个顶点随机贴上写有数字1至8的8个标签中的4个,并记对应的标号为f(η)(η取值为A、B、C、D),E为侧棱AB上一点
(1)求事件“f(C)+f(D)为偶数”的概率p1
(2)若|BE|:|EA|=f(B):f(A),求二面角E-CD-A的平面角θ大于$\frac{π}{4}$的概率p2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合M{h(x)|h(x)的定义域为R,且对任意x都有h(-x)=-h(x)}设函数f(x)=$\frac{-{2}^{x}+a}{{2}^{x+1}+b}$(a,b为常数).
(1)当a=b=1时,判断是否有f(x)∈M,说明理由;
(2)若函数f(x)∈M,且对任意的x都有f(x)<sinθ成立,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=2x-6+lnx的零点所在的区间(  )
A.(1,2)B.(3,4)C.(2,3)D.(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x-a,x≥1}\\{{x}^{2}-3ax+2{a}^{2},x<1}\end{array}\right.$有3个零点,则实数a的取值范围是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a=2-3,b=3${\;}^{\frac{1}{2}}$,c=log25,则(  )
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知动圆C过点F(0,1),圆心C在x轴上方,且到点F的距离比到x轴的距离大1.
(Ⅰ) 求动圆圆心C的轨迹E的方程;
(Ⅱ) 设A、B是曲线E上两个不同的动点,过A、B分别作曲线E的切线,两切线相交于P点,且AP⊥BP,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C的对边分别为a,b,c,且2b=asinC.
(1)求$\frac{1}{tanA}$+$\frac{1}{tanC}$的值;
(2)若tanA=3,求tanB的值.

查看答案和解析>>

同步练习册答案