精英家教网 > 高中数学 > 题目详情
7.函数f(x)=2x-6+lnx的零点所在的区间(  )
A.(1,2)B.(3,4)C.(2,3)D.(4,5)

分析 据函数零点的判定定理,判断f(1),f(2),f(3),f(4)的符号,即可求得结论.

解答 解:f(1)=2-6<0,
f(2)=4+ln2-6<0,
f(3)=6+ln3-6>0,
f(4)=8+ln4-6>0,
∴f(2)f(3)<0,
∴m的所在区间为(2,3).
故选:C.

点评 考查函数的零点的判定定理,以及学生的计算能力.解答关键是熟悉函数的零点存在性定理,此题是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知一个扇形的周长为10cm,圆心角为2弧度,则这个扇形的面积为(  )cm2
A.25B.5C.$\frac{25}{4}$D.$\frac{25}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线$\left\{\begin{array}{l}x=1+2t\\ y=2+t\end{array}\right.$(t为参数)被圆x2+y2=4截得的弦长等于(  )
A.$\frac{{2\sqrt{55}}}{5}$B.$\frac{22}{5}$C.$\frac{{2\sqrt{11}}}{5}$D.$\frac{{22\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点A是抛物线y2=2px上的一点,F为其焦点,若以F为圆心,以|FA|为半径的圆交准线于B,C两点,且△FBC为正三角形,当△ABC的面积是$\frac{128}{3}$时,则抛物线的方程为y2=16x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知A=[-2,a],B={y丨y=2x+3,x∈A},C={y丨y=x2,x∈A},C⊆B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.数列{an}满足a1+2a2+…+nan=4-$\frac{n+2}{{2}^{n-1}}$,n∈N*
(Ⅰ) 求a3的值;
(Ⅱ) 求数列{an}前n项和Tn
(Ⅲ)设${b_n}={log_{\frac{1}{2}}}{a_1}+{log_{\frac{1}{2}}}{a_2}+…+{log_{\frac{1}{2}}}{a_n}$,cn=$\frac{1}{{{b_{n+1}}}}$,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足a1=a2=2,2nan+1-(3n+2)an+(n+1)an-1=0(n≥2),求a2009的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={x|4≤x<8,x∈R},B={x|6<x<9,x∈R},C={x|x>a,x∈R}.
(1)求A∪B;
(2)(∁UA)∩B;    
(3)若A∩C=∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数y=2sin(3x-$\frac{π}{4}$),x∈[0,$\frac{π}{2}$]的最值,并说明取得最值时x的取值.

查看答案和解析>>

同步练习册答案