分析 (1)求出f(x)的解析式,计算f(-1),f(1),即可判断;
(2)由题意可得可得f(-x)=-f(x),即$\frac{-{2}^{-x}+a}{{2}^{-x+1}+b}$=-$\frac{-{2}^{x}+a}{{2}^{x+1}+b}$对x∈R恒成立,即有(2a-b)•22x+(2ab-4)•2x+(2a-b)=0,求得a,b,再由指数函数的值域求得f(x)的范围,由恒成立思想可得sinθ≥$\frac{1}{2}$,由正弦函数的图象即可得到所求范围.
解答 解:(1)举反例即可.f(x)=$\frac{-{2}^{x}+1}{{2}^{x+1}+1}$,由f(-1)=$\frac{-{2}^{-1}+1}{1+1}$=$\frac{1}{4}$,
f(1)=$\frac{-2+1}{4+1}$=-$\frac{1}{5}$,可得f(-1)≠-f(1),即有f(x)∉M;
(2)由f(x)∈M,可得f(-x)=-f(x),即
$\frac{-{2}^{-x}+a}{{2}^{-x+1}+b}$=-$\frac{-{2}^{x}+a}{{2}^{x+1}+b}$对x∈R恒成立,
即有(2a-b)•22x+(2ab-4)•2x+(2a-b)=0,
即为$\left\{\begin{array}{l}{2a-b=0}\\{2ab-4=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=1}\\{b=2}\end{array}\right.$或$\left\{\begin{array}{l}{a=-1}\\{b=-2}\end{array}\right.$,
由f(x)的定义域为R,可得$\left\{\begin{array}{l}{a=-1}\\{b=-2}\end{array}\right.$舍去,
故a=1,b=2,即有f(x)=$\frac{-{2}^{x}+1}{{2}^{x+1}+2}$=-$\frac{1}{2}$+$\frac{1}{{2}^{x}+1}$,
由2x>0,可得1+2x>1,即0<$\frac{1}{{2}^{x}+1}$<1,
则f(x)∈(-$\frac{1}{2}$,$\frac{1}{2}$),
由对任意的x都有f(x)<sinθ成立,可得
sinθ≥$\frac{1}{2}$,
解得2kπ+$\frac{π}{6}$≤θ≤2kπ+$\frac{5π}{6}$,k∈Z.
点评 本题考查函数的奇偶性的判断和运用,考查不等式恒成立问题的解法,注意运用转化思想求出函数的值域,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 10 | C. | 12 | D. | 14 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com