【题目】据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).
(1)当时,求s的值;
(2)将s随t变化的规律用数学关系式表示出来;
(3)若N城位于M地正南方向,且距M地650km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.
科目:高中数学 来源: 题型:
【题目】在直角坐标坐标系中,曲线的参数方程为(为参数),以直角坐标系的原点为极点,以轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为.
(1)求曲线的普通方程;
(2)若与曲线相切,且与坐标轴交于两点,求以为直径的圆的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是定义在R上的函数,对m,n∈R,恒有f(m+n)=f(m)·f(n)(f(m)≠0,f(n)≠0),且当x>0时,0<f(x)<1.
(1)求证f(0)=1;
(2)求证x∈R时,恒有f(x)>0;
(3)求证f(x)在R上是减函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下四个结论:
①函数是偶函数;
②当时,函数的值域是;
③若扇形的周长为,圆心角为,则该扇形的弧长为6cm;
④已知定义域为的函数,当且仅当时,成立.
⑤函数的最小正周期是
则上述结论中正确的是______(写出所有正确结论的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在矩形中,,,为的中点,为中点.将沿折起到,使得平面平面(如图2).
(1)求证:;
(2)求直线与平面所成角的正弦值;
(3)在线段上是否存在点,使得平面? 若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一个“蝴蝶形图案(阴影区域)”,其中是过抛物线的两条互相垂直的弦(点在第二象限),且交于点,点为轴上一点,,其中为锐角
(1)设线段的长为,将表示为关于的函数
(2)求“蝴蝶形图案”面积的最小值,并指出取最小值时的大小
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,已知都是边长为的等边三角形,为中点,且平面,为线段上一动点,记.
(1)当时,求异面直线与所成角的余弦值;
(2)当与平面所成角的正弦值为时,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com