【题目】已知函数.
(1)当时,讨论函数的单调性;
(2)求函数的极值.
【答案】(1) 时, 递减; 时, 递增;(2)见解析.
【解析】分析:(1)求得函数,代入,得,设,得,得到函数的单调性,进而求得函数的单调性;
(2)由(1),得到,由在区间递减,在递增,得到时,分类讨论即可求得的极值.
详解:(1)函数的定义域为,其导数为.当时,
设,则,显然时递增;
时, 递减,故,于是,
所以时, 递减; 时, 递增;
(2)由(1)知,
函数在递增,在递减,所以
又当时, ,
讨论:
①当时, ,此时:
因为时, 递增; 时, 递减;
所以,无极小值;
②当时, ,此时:
因为时, 递减; 时, 递增;
所以,无极大值;
③当时,
又在递增,所以在上有唯一零点,且,
易证: 时, ,所以,
所以
又在递减,所以在上有唯一零点,且,故:
当时, 递减;当, 递增;
当时, 递减;当, 递增;
所以, , ,
.
科目:高中数学 来源: 题型:
【题目】据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).
(1)当时,求s的值;
(2)将s随t变化的规律用数学关系式表示出来;
(3)若N城位于M地正南方向,且距M地650km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】判断下列全称量词命题的真假:
(1)每一个末位是0的整数都是5的倍数;
(2)线段垂直平分线上的点到这条线段两个端点的距离相等;
(3)对任意负数的平方是正数;
(4)梯形的对角线相等
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中:
①若函数的定义域为,则一定是偶函数;
②若是定义域上奇函数,,都有,则的图像关于直线对称;
③已知,是函数的定义域内的任意两个值,且,若,则是定义域减函数;
④已知是定义在上奇函数,且也为奇函数,则是以4为周期的周期函数。
其中真命题的有_____________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】判断下列命题的真假,并写出这些命题的否定:
(1)平面直角坐标系下每条直线都与x轴相交;
(2)每个二次函数的图象都是轴对称图形;
(3)存在一个三角形,它的内角和小于180°;
(4)存在一个四边形,它的四个顶点不在同一个圆上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在实数集上的偶函数和奇函数满足.
(1)求与的解析式;
(2)求证:在区间上单调递增;并求在区间的反函数;
(3)设(其中为常数),若对于恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列满足,,,.s
(1)证明:数列是等差数列,并求数列的通项;
(2)求数列的通项,并求数列的前项和;
(3)若,且是单调递增数列,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com