精英家教网 > 高中数学 > 题目详情

【题目】设数列满足.s

1)证明:数列是等差数列,并求数列的通项;

2)求数列的通项,并求数列的前项和

3)若,且是单调递增数列,求实数的取值范围.

【答案】1)证明见解析,;(2

3.

【解析】

1)利用等差数列的定义可证明出数列是等差数列,并确定该数列的首项和公差,即可得出数列的通项;

2)利用累加法求出数列的通项,然后利用裂项法求出数列的前项和

3)求出,然后分为正奇数和正偶数两种情况分类讨论,结合可得出实数的取值范围.

1,等式两边同时减去

,且

所以,数列是以为首项,以为公差的等差数列,

因此,

2

3.

为正奇数时,

,得,可得

由于数列为单调递减数列,

为正偶数时,

,得,可得

由于数列为单调递增数列,.

因此,实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,讨论函数的单调性;

(2)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,已知都是边长为的等边三角形,中点,且平面为线段上一动点,记

(1)当时,求异面直线所成角的余弦值;

(2)当与平面所成角的正弦值为时,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(e是自然对数的底数),对任意的R,存在,有,则的取值范围为____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】九章算术中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马如图,已知四棱锥为阳马,且底面E是线段AB上的点含端点,设SEAD所成的角为SE与底面ABCD所成的角为,二面角的平面角为,则  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 表示双曲线命题 表示椭圆

(1)若命题与命题 都为真命题 的什么条件

(请用简要过程说明是“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分也不必要条件”中的哪一个)

(2)若 为假命题 为真命题求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的焦点为FM是抛物线C上位于第一象限内的任意一点,O为坐标原点,记经过MFO三点的圆的圆心为Q,且点Q到抛物线C的准线的距离为

求点Q的纵坐标;可用p表示

求抛物线C的方程;

设直线l与抛物线C有两个不同的交点A若点M的横坐标为2,且的面积为,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,有下列命题:①当时,是增函数;当时,是减函数;②其图象关于轴对称;③无最大值,也无最小值;④在区间上是增函数;⑤的最小值是。其中所有不正确命题的序号是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,侧面底面为等腰直角三角形,为 直角梯形,.

(1)若的中点,上一点满足,求证:平面

(2)若,求四棱锥的表面积.

查看答案和解析>>

同步练习册答案