精英家教网 > 高中数学 > 题目详情
6.一个人带着三只狼和三只羚羊过河,只有一条船,该船可容纳一个人和两只动物.没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃羚羊.该人如何才能将动物转移过河?请设计算法.

分析 若狼的数量不少于羊的数量,狼会吃羊,那么羊的数量要一直多于狼的数量,先把2只狼带到对岸,然后人自己返回,再一只羊带到对岸,然后把两只狼带回;再把两只羊带到对岸,然后人自己返回,再把3只狼份两次运到对岸即可.

解答 解:人和动物同船不用考虑动物的争斗,但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造中应尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势,具体算法如下:
第一步,人带两只狼过河,自己返回.
第二步,人带一只羚羊过河,带2只狼返回.
第三步,人带两只羚羊过河,自己返回.
第四步,人带带2只狼过河,自己返回.
第五步,人带1只狼过河.

点评 本题主要考查了设计程序算法解决实际问题,解决本题抓住羊的数量要一直多于羊的数量这一特点,进行求解即可,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=mx-$\frac{m-1+2e}{x}$-lnx(e为自然对数的底数),m∈R.
(1)当m=0时,求函数f(x)的单调区间和极值;
(2)已知函数g(x)=$\frac{1}{x•sinθ}$+lnx在[1,+∞)上为增函数,且θ∈(0,π),若在[1,e]上至少存在一个实数x0,使得f(x0)>g(x0)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设抛物线C:y2=4x的焦点为F,过F的直线l与抛物线交于A,B两点,M为抛物线C的准线与x轴的交点,若$tan∠AMB=2\sqrt{2}$,则|AB|=(  )
A.4B.8C.$3\sqrt{2}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率$e=\frac{{2\sqrt{5}}}{5}$,左顶点A与右焦点F的距离$AF=2+\sqrt{5}$.
(1)求椭圆C的方程;
(2)过右焦点F作斜率为k的直线l与椭圆C交于M,N两点,P(2,1)为定点,当△MNP的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,椭圆C过点$M({0,\sqrt{3}})$,且△MF1F2为正三角形.
(1)求椭圆C的方程;
(2)垂直于x轴的直线与椭圆C交于A、B两点,过点P(4,0)的直线PB交椭圆C于另一点E,证明:直线AE与x轴相交于定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示,网格线上小正方形边长为1,用两个平面去截正方体,所得的几何体的三视图为粗线部分,则此几何体的体积为(  )
A.$\frac{20}{3}$B.$\frac{19}{3}$C.6D.$\frac{17}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$cos(α+\frac{π}{4})=\frac{{\sqrt{2}}}{4}$,则sin2α=(  )
A.$\frac{1}{8}$B.$\frac{3}{4}$C.$-\frac{1}{8}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=sin(ωx+$\frac{π}{3}$)+2(ω>0)的图形向右平移$\frac{π}{3}$个单位后与原图象重合,则ω的最小值是(  )
A.6B.3C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ax2+bx+c,当|x|≤1时,|f(x)|≤1恒成立.
(Ⅰ)若a=1,b=c,求实数b的取值范围;
(Ⅱ)若g(x)=|cx2-bx+a|,当|x|≤1时,求g(x)的最大值.

查看答案和解析>>

同步练习册答案