精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=mx-$\frac{m-1+2e}{x}$-lnx(e为自然对数的底数),m∈R.
(1)当m=0时,求函数f(x)的单调区间和极值;
(2)已知函数g(x)=$\frac{1}{x•sinθ}$+lnx在[1,+∞)上为增函数,且θ∈(0,π),若在[1,e]上至少存在一个实数x0,使得f(x0)>g(x0)成立,求m的取值范围.

分析 (1)当m=0时,求出f(x)、f′(x),在定义域内解不等式f′(x)>0,f′(x)<0得到单调区间,由极值定义可得极值;
(2)令F(x)=f(x)-g(x)=mx-$\frac{m+2e}{x}$-2lnx,分m≤0,m>0两种情况进行讨论,由题意知,只要在[1,e]上F(x) max>0即可.

解答 解:(1)f(x)的定义域为(0,+∞).
当m=0时,f(x)=$\frac{1-2e}{x}$-lnx,f′(x)=$\frac{(2e-1)-x}{{x}^{2}}$,
当0<x<2e-1时,f′(x)>0,f(x)单调递增,当x>2e-1时,f′(x)<0,f(x)单调递减;
所以f(x)的增区间是(0,2e-1),减区间是(2e-1,+∞),当x=2e-1时,f(x)取得极大值f(2e-1)=-1-ln(2e-1).
(2)令F(x)=f(x)-g(x)=mx-$\frac{m+2e}{x}$-2lnx,
①当m≤0时,x∈[1,e],mx-$\frac{m}{x}$≤0,-2lnx-$\frac{2e}{x}$<0,
∴在[1,e]上不存在一个x0,使得f(x0)>g(x0)成立.
②当m>0时,F′(x)=m+$\frac{m+2e}{{x}^{2}}$-$\frac{2}{x}$=$\frac{{mx}^{2}-2x+m+2e}{{x}^{2}}$,
∵x∈[1,e],∴2e-2x≥0,mx2+m>0,
∴F′(x)>0在[1,e]恒成立.
故F(x)在[1,e]上单调递增,
F(x) max=F(e)=me-$\frac{m}{e}$-4,
只要me-$\frac{m}{e}$-4>0,解得m>$\frac{4e}{{e}^{2}-1}$,
故m的取值范围是($\frac{4e}{{e}^{2}-1}$,+∞).

点评 本题考查利用导数求闭区间上函数的最值,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.在△ABC中,三个内角A,B,C所对的边为a,b,c,若S△ABC=2$\sqrt{3}$,a+b=6,且$\frac{acosB+bcosA}{c}$=2cosC,则c=$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),且x∈[-$\frac{π}{2}$,$\frac{π}{2}$].
(Ⅰ)求|$\overrightarrow{a}$+$\overrightarrow{b}$|的取值范围;
(Ⅱ)若函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-2m•|$\overrightarrow{a}$+$\overrightarrow{b}$|的最小值为-2,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$与双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$的焦点相同,且椭圆上任意一点到其两个焦点的距离之和为20,则椭圆的离心率e的值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{7}}}{10}$C.$\frac{{\sqrt{7}}}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某几何体的三视图如图所示,则该几何体的体积为(  )
A.6B.5C.4D.5.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知定义域为R的函数f(x)满足:①对任意的实数x,都有f(x+2)=2f(x);②当x∈[-1,1]时,$f(x)=cos\frac{π}{2}x$.记函数g(x)=f(x)-log4(x+1),则函数g(x)在区间[0,10]内的零点个数是10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知P是抛物线y2=4x上一动点,则点P到直线l:2x-y+3=0距离的最小值是(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{5}}{2}$C.2D.$\sqrt{5}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.过抛物线y2=2px(p>0)的焦点F,且倾斜角为$\frac{π}{4}$的直线与抛物线交于A,B两点,若弦AB的垂直平分线经过点(0,2),则p等于$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一个人带着三只狼和三只羚羊过河,只有一条船,该船可容纳一个人和两只动物.没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃羚羊.该人如何才能将动物转移过河?请设计算法.

查看答案和解析>>

同步练习册答案