精英家教网 > 高中数学 > 题目详情
5.函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(x)的单调递减区间为(  )
A.$(kπ-\frac{π}{6},kπ+\frac{π}{3}),k∈Z$B.$(2kπ-\frac{π}{6},2kπ+\frac{π}{3}),k∈Z$
C.$(2kπ+\frac{π}{3},2kπ+\frac{5π}{6}),k∈Z$D.$(kπ+\frac{π}{3},kπ+\frac{5π}{6}),k∈Z$

分析 由图象得到函数的周期,然后写出函数的单调减区间.

解答 解:由图象得到三角函数的周期为4($\frac{π}{12}+\frac{π}{6}$)=π,所以ω=2,所以f(x)的单调减区间为[kπ+$\frac{π}{3}$,k$π+\frac{5π}{6}$],k∈Z.
故选:D.

点评 本题考查了三角函数的图象;周期识图是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,若在双曲线上存在点P满足2|$\overrightarrow{P{F}_{1}}+\overrightarrow{P{F}_{2}}$|≤|$\overrightarrow{{F}_{1}{F}_{2}}$|,则双曲线C的离心率的取值范围是(  )
A.(1,$\sqrt{2}$]B.(1,2]C.[$\sqrt{2}$,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.$f(x)=\left\{{\begin{array}{l}{{x^2}+2,(x≥0)}\\{-x+1,(x<0)}\end{array}}\right.$,则f[f(-1)]=(  )
A.2B.6C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.不等式$\frac{1}{x}>1$的解集是(  )
A.{x|x>1}B.{x|x<1}C.{x|0<x<1}D.{x|x>1或x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.安排甲、乙、丙、丁四人参加周一至周五的公益活动,每天只需一人参加,其中甲参加三天活动,甲、乙、丙、丁每人参加一天,那么甲连续三天参加活动的概率为$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.随机地取两个数x,y,使得x∈[-1,1],y∈[0,1],则满足y≥x2的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,过点P(0,1)且互相垂直的两条直线分别与
圆O:x2+y2=4交于点A,B,与圆M:(x-2)2+(y-1)2=1交于点C,D.
(1)若$AB=\frac{3}{2}\sqrt{7}$,求CD的长;
(2)若CD中点为E,求△ABE面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四边形ABCD为矩形,SA⊥平面ABCD,E、F分别是SC、SD的中点,SA=AD=2,$AB=\sqrt{6}$
(I)求证:EF∥平面SAB;
(Ⅱ)求证:SD⊥平面AEF;
(Ⅲ)求三棱锥S-AEF体积的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点为F1,F2,离心率为$\frac{1}{2}$,点P为其上动点,且三角形PF1F2的面积最大值为$\sqrt{3}$,O为坐标原点.
(1)求椭圆C的方程;
(2)若点M,N为C上的两个动点,求常数m,使$\overrightarrow{OM}•\overrightarrow{ON}$=m时,点O到直线MN的距离为定值,求这个定值.

查看答案和解析>>

同步练习册答案