精英家教网 > 高中数学 > 题目详情
16.$f(x)=\left\{{\begin{array}{l}{{x^2}+2,(x≥0)}\\{-x+1,(x<0)}\end{array}}\right.$,则f[f(-1)]=(  )
A.2B.6C.-1D.-2

分析 利用分段函数的表达式,利用代入法进行求解即可.

解答 解:f(-1)=-(-1)+1=2,
f(2)=22+2=4+2=6,
故f[f(-1)]=6,
故选:B

点评 本题主要考查函数值的计算,根据分段函数的表达式,利用代入法是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设a∈Z,已知定义在R上的函数f(x)=2x4+3x3-3x2-6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.
(Ⅰ)求g(x)的单调区间;
(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m-x0)-f(m),求证:h(m)h(x0)<0;
(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且$\frac{p}{q}$∈[1,x0)∪(x0,2],满足|$\frac{p}{q}$-x0|≥$\frac{1}{A{q}^{4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某公司的组织结构图如图所示,则开发部的直接领导是总经理.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{lnx}{x}$,g(x)=$\frac{m}{x}$+$\frac{1}{2}$(m∈R).
(Ⅰ)当m=1时,求曲线y=g(x)在x=1处的切线方程;
(Ⅱ)求f(x)的单调区间并比较2017${\;}^{\frac{1}{2017}}$与2016${\;}^{\frac{1}{2016}}$的大小;
(Ⅲ)若对于任意正实数b,关于x的不等式bf(x)>g(x)在区间[1,e]上恒成立,求实数m的取值范围.(其中e=2.71828…)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.阅读下列伪代码,当a,b的输入值分别为2,3时,则输出的实数m的值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx-ax2在处的切线与直线x-y+1=0垂直.
(1)求函数y=f(x)+xf'(x)(f'(x)为f(x)的导函数)的单调区间;
(2)记函数$g(x)=f(x)+\frac{3}{2}{x^2}-({1-b})x$,设x1,x2(x1<x2)是函数g(x)的两个极值点,若$b≥\frac{{{e^2}+1}}{e}-1$,证明:x2≥e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设计院拟从4个国家级课题和6个省级课题中各选2个课题作为本年度的研究项目,若国家级课题A和省级课题B至少有一个被选中的不同选法种数是m,那么二项式(1+mx28的展开式中x4的系数为(  )
A.54000B.100400C.100600D.100800

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(x)的单调递减区间为(  )
A.$(kπ-\frac{π}{6},kπ+\frac{π}{3}),k∈Z$B.$(2kπ-\frac{π}{6},2kπ+\frac{π}{3}),k∈Z$
C.$(2kπ+\frac{π}{3},2kπ+\frac{5π}{6}),k∈Z$D.$(kπ+\frac{π}{3},kπ+\frac{5π}{6}),k∈Z$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$sin({α+\frac{π}{6}})=\frac{4}{5}$,则$cos({α-\frac{π}{3}})$的值为(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$-\frac{4}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

同步练习册答案