精英家教网 > 高中数学 > 题目详情
8.设a∈Z,已知定义在R上的函数f(x)=2x4+3x3-3x2-6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.
(Ⅰ)求g(x)的单调区间;
(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m-x0)-f(m),求证:h(m)h(x0)<0;
(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且$\frac{p}{q}$∈[1,x0)∪(x0,2],满足|$\frac{p}{q}$-x0|≥$\frac{1}{A{q}^{4}}$.

分析 (Ⅰ)求出函数的导函数g(x)=f′(x)=8x3+9x2-6x-6,求出极值点,通过列表判断函数的单调性求出单调区间即可.
(Ⅱ)由h(x)=g(x)(m-x0)-f(m),推出h(m)=g(m)(m-x0)-f(m),
令函数H1(x)=g(x)(x-x0)-f(x),求出导函数H′1(x)利用(Ⅰ)知,推出h(m)h(x0)<0.
(Ⅲ)对于任意的正整数p,q,且$\frac{p}{q}∈[1,{x}_{0})∪({x}_{0},2]$,令m=$\frac{p}{q}$,函数h(x)=g(x)(m-x0)-f(m).
由(Ⅱ)知,当m∈[1,x0)时,当m∈(x0,2]时,通过h(x)的零点.转化推出|$\frac{p}{q}$-x0|=$|\frac{f(\frac{p}{q})}{g({x}_{1})}|$≥$\frac{|f(\frac{p}{q})|}{g(2)}$=$\frac{|2{p}^{4}+3{p}^{3}q-3{p}^{2}{q}^{2}-6p{q}^{3}+a{q}^{4}|}{g(2){q}^{4}}$.推出|2p4+3p3q-3p2q2-6pq3+aq4|≥1.然后推出结果.

解答 (Ⅰ)解:由f(x)=2x4+3x3-3x2-6x+a,可得g(x)=f′(x)=8x3+9x2-6x-6,
进而可得g′(x)=24x2+18x-6.令g′(x)=0,解得x=-1,或x=$\frac{1}{4}$.
当x变化时,g′(x),g(x)的变化情况如下表:

x(-∞,-1)(-1,$\frac{1}{4}$)($\frac{1}{4}$,+∞)
g′(x)+-+
g(x)
所以,g(x)的单调递增区间是(-∞,-1),($\frac{1}{4}$,+∞),单调递减区间是(-1,$\frac{1}{4}$).
(Ⅱ)证明:由h(x)=g(x)(m-x0)-f(m),得h(m)=g(m)(m-x0)-f(m),
h(x0)=g(x0)(m-x0)-f(m).
令函数H1(x)=g(x)(x-x0)-f(x),则H′1(x)=g′(x)(x-x0).
由(Ⅰ)知,当x∈[1,2]时,g′(x)>0,
故当x∈[1,x0)时,H′1(x)<0,H1(x)单调递减;
当x∈(x0,2]时,H′1(x)>0,H1(x)单调递增.
因此,当x∈[1,x0)∪(x0,2]时,H1(x)>H1(x0)=-f(x0)=0,可得H1(m)>0即h(m)>0,
令函数H2(x)=g(x0)(x-x0)-f(x),则H′2(x)=g′(x0)-g(x).由(Ⅰ)知,g(x)在[1,2]上单调递增,故当x∈[1,x0)时,H′2(x)>0,H2(x)单调递增;当x∈(x0,2]时,H′2(x)<0,H2(x)单调递减.因此,当x∈[1,x0)∪(x0,2]时,H2(x)>H2(x0)=0,可得得H2(m)<0即h(x0)<0,.
所以,h(m)h(x0)<0.
(Ⅲ)对于任意的正整数p,q,且$\frac{p}{q}∈[1,{x}_{0})∪({x}_{0},2]$,
令m=$\frac{p}{q}$,函数h(x)=g(x)(m-x0)-f(m).
由(Ⅱ)知,当m∈[1,x0)时,h(x)在区间(m,x0)内有零点;
当m∈(x0,2]时,h(x)在区间(x0,m)内有零点.
所以h(x)在(1,2)内至少有一个零点,不妨设为x1,则h(x1)=g(x1)($\frac{p}{q}$-x0)-f($\frac{p}{q}$)=0.
由(Ⅰ)知g(x)在[1,2]上单调递增,故0<g(1)<g(x1)<g(2),
于是|$\frac{p}{q}$-x0|=$|\frac{f(\frac{p}{q})}{g({x}_{1})}|$≥$\frac{|f(\frac{p}{q})|}{g(2)}$=$\frac{|2{p}^{4}+3{p}^{3}q-3{p}^{2}{q}^{2}-6p{q}^{3}+a{q}^{4}|}{g(2){q}^{4}}$.
因为当x∈[1,2]时,g(x)>0,故f(x)在[1,2]上单调递增,
所以f(x)在区间[1,2]上除x0外没有其他的零点,而$\frac{p}{q}$≠x0,故f($\frac{p}{q}$)≠0.
又因为p,q,a均为整数,所以|2p4+3p3q-3p2q2-6pq3+aq4|是正整数,
从而|2p4+3p3q-3p2q2-6pq3+aq4|≥1.
所以|$\frac{p}{q}$-x0|≥$\frac{1}{g(2){q}^{4}}$.所以,只要取A=g(2),就有|$\frac{p}{q}$-x0|≥$\frac{1}{A{q}^{4}}$.

点评 本题考查函数的导数的综合应用,函数的单调性以及函数的最值的求法,考查分类讨论思想以及转化思想的应用,是难度比较大的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.如图,正方体ABCD-A1B1C1D1的棱长为a,在此几何体中,给出下面四个结论:①异面直线A1D与AB1所成角为60°;②直线A1D与BC1垂直;③直线A1D与BD1平行;④三棱锥A-A1CD的体积为$\frac{1}{6}{a^3}$,其中正确的结论个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知(1+3x)n的展开式中含有x2的系数是54,则n=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-x+3,x≤1}\\{x+\frac{2}{x},x>1}\end{array}$,设a∈R,若关于x的不等式f(x)≥|$\frac{x}{2}$+a|在R上恒成立,则a的取值范围是(  )
A.[-$\frac{47}{16}$,2]B.[-$\frac{47}{16}$,$\frac{39}{16}$]C.[-2$\sqrt{3}$,2]D.[-2$\sqrt{3}$,$\frac{39}{16}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB=$\frac{3}{5}$.
(Ⅰ)求b和sinA的值;
(Ⅱ)求sin(2A+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线的方程为(  )
A.$\frac{x^2}{4}-\frac{y^2}{12}=1$B.$\frac{x^2}{12}-\frac{y^2}{4}=1$C.$\frac{x^2}{3}-{y^2}=1$D.${x^2}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知{an}为等差数列,前n项和为Sn(n∈N*),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)求数列{a2nbn}的前n项和(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,若在双曲线上存在点P满足2|$\overrightarrow{P{F}_{1}}+\overrightarrow{P{F}_{2}}$|≤|$\overrightarrow{{F}_{1}{F}_{2}}$|,则双曲线C的离心率的取值范围是(  )
A.(1,$\sqrt{2}$]B.(1,2]C.[$\sqrt{2}$,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.$f(x)=\left\{{\begin{array}{l}{{x^2}+2,(x≥0)}\\{-x+1,(x<0)}\end{array}}\right.$,则f[f(-1)]=(  )
A.2B.6C.-1D.-2

查看答案和解析>>

同步练习册答案