精英家教网 > 高中数学 > 题目详情
18.若方程${(\frac{1}{4})^x}+{(\frac{1}{2})^{x-1}}$-a=0有正数解,则实数a的取值范围是(  )
A.0<a<1B.-3<a<0C.0<a<3D.-1<a<0

分析 为便于处理,不妨设t=$(\frac{1}{2})^{x}$,于是可转化为求关于t的方程t2+2t-a=0的根的问题,明显地,原方程有正实数解,即可转化为关于t的方程在(0,1)上有解的问题.于是问题迎刃而解.

解答 解:设t=$(\frac{1}{2})^{x}$,则有:a=t2+2t=(t+1)2-1.
原方程有正数解x>0,则0<t<1,
即关于t的方程t2+2t-a=0在(0,1)上有实根.
又因为a=(t+1)2-1.
所以当0<t<1时有1<t+1<2,
即1<(t+1)2<4,
即0<(t+1)2-1<3,
即得0<a<3.
故选:C.

点评 本题考查函数最值的求法,二次方程根的分布问题,以及对含参数的函数、方程的问题的考查,亦对转化思想,换元法在解题中的应用进行了考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.一个空间几何体的三视图如图,其中正视图是边长为2的正三角形,俯视图是边长分别为1,2的矩形,则该几何体的侧面积为(  )
A.$\sqrt{3}$+4B.$\sqrt{3}$+6C.2$\sqrt{3}$+4D.2$\sqrt{3}$+6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在每场比赛之前,世界杯组委会都会指派裁判员进行执法.在某场比赛前,有10名裁判可供选择,其中欧洲裁判3人,亚洲裁判4人,美洲裁判3人.若组委会要从这10名裁判中任选3人执法本次比赛.求:
(1)选出的欧洲裁判人数多于亚洲裁判人数的概率;
(2)选出的3人中,欧洲裁判人数x的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知椭圆E:$\frac{x^2}{4}+\frac{y^2}{2}=1$,直线l交椭圆于A,B两点,若AB的中点坐标为($\frac{1}{2}$,-1),则l的方程为(  )
A.2x+y=0B.$x-2y-\frac{5}{2}=0$C.2x-y-2=0D.$x-4y-\frac{9}{2}=0$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数满足2f(x)-f(-x)=3x,则f(x)的解析式为f(x)=x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.把一个放在水平地面上、长为l的匀质链条竖直向上刚好拉直时,它的重心位置升高多少?一个放在水平地面上、棱长为a的均匀正方体,绕其一条棱翻转时,其重心位置升高的最大高度是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在几何体ABCDE中,∠BAC=$\frac{π}{2}$,DC⊥平面ABC,EB⊥平面ABC,AB=AC=BE=2,CD=1,设F是BC的中点.
(1)求证:平面AFE⊥平面BCDE;
(2)求几何体ABCDE的体积;
(3)求点C到平面AFE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=3,则AB的取值范围是($\frac{{3(\sqrt{6}-\sqrt{2})}}{2},\frac{{3(\sqrt{6}+\sqrt{2})}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在一次抗雪救灾中,需要在A、B两地之间架设高压电线,为测量A、B两地的距离,救援人员在相距l米的C、D两地(A,B,C,D在同一平面上),测得∠ACD=45°,∠BCD=30°∠ADC=75°(如图),考虑到电线在自然下垂和施工损耗等原因,实际所得电线长度大于应是A、B距离的1.2倍,问救援至少英爱准备多长的电线?

查看答案和解析>>

同步练习册答案