精英家教网 > 高中数学 > 题目详情
7.2014年12月初,南京查获了一批问题牛肉,滁州市食药监局经民众举报获知某地6个储存牛肉的冷库有1个冷库牛肉被病毒感染,需要通过对库存牛肉抽样化验病毒DNA来确定感染牛肉,以免民众食用有损身体健康.下面是两种化验方案:
方案甲:逐个化验样品,直到能确定感染冷库为止.
方案乙:将样品分为两组,每组三个,并将它们混合在一起化验,若存在病毒DNA,则表明感染牛肉在这三个样品当中,然后逐个化验,直到确定感染冷库为止;若结果不含病毒DNA,则在另外一组样品中逐个进行化验.
(1)求依据方案乙所需化验恰好为2次的概率.
(2)首次化验化验费为10元,第二次化验化验费为8元,第三次及其以后每次化验费都是6元,列出方案甲所需化验费用的分布列,并估计用方案甲平均需要化验费多少元?
(3)试比较两种方案,估计哪种方案有利于尽快查找到感染冷库.说明理由.

分析 (1)方案乙中所需化验次数恰好为2次的事件有两种情况:第一种,先化验一组,结果不含病毒DNA,再从另一组任取一个样品进行化验;第二种,先化验一组,结果含有病毒DNA,再从中逐个化验,
恰第一个样品含有病毒.由此能求出依据方案乙所需化验恰好为2次的概率.
(2)设方案甲化验的次数为ξ,则ξ可能的取值为1,2,3,4,5,对应的化验费为η元,分别求出相应的概率,由此能求出方案甲所需化验费用的分布列,并估计用方案甲平均需要化验费多少元.
(3)由(2)知方案甲平均化验次数为E(ξ)=$\frac{10}{3}$,设方案乙化验的次数为?,则?可能的取值为2,3,P(?=2)=$\frac{1}{3}$,P(?=3)=$\frac{2}{3}$,由此能求出方案乙化验次数的期望值较小,可以尽快查找到感染冷库.

解答 解:(1)方案乙中所需化验次数恰好为2次的事件有两种情况:
第一种,先化验一组,结果不含病毒DNA,再从另一组任取一个样品进行化验,
则恰含有病毒的概率为$\frac{{C}_{5}^{2}}{{C}_{6}^{3}}×\frac{1}{{C}_{3}^{1}}$=$\frac{1}{6}$.
第二种,先化验一组,结果含有病毒DNA,再从中逐个化验,
恰第一个样品含有病毒的概率为$\frac{{C}_{5}^{2}}{{C}_{6}^{3}}×\frac{1}{{C}_{3}^{1}}$=$\frac{1}{6}$.
∴依据方案乙所需化验恰好为2次的概率为$\frac{1}{6}+\frac{1}{6}$=$\frac{1}{3}$.
(2)设方案甲化验的次数为ξ,则ξ可能的取值为1,2,3,4,5,对应的化验费为η元,
P(ξ=1)=P(η=10)=$\frac{1}{6}$,
P(ξ=2)=P(η=18)=$\frac{5}{6}×\frac{1}{5}$=$\frac{1}{6}$,
P(ξ=3)=P(η=24)=$\frac{5}{6}×\frac{4}{5}×\frac{1}{4}$=$\frac{1}{6}$,
P(ξ=4)=P(η=30)=$\frac{5}{6}×\frac{4}{5}×\frac{3}{4}$×$\frac{1}{3}$=$\frac{1}{6}$,
P(ξ=5)=P(η=36)=$\frac{5}{6}×\frac{4}{5}×\frac{3}{4}×\frac{2}{3}=\frac{1}{3}$,
∴方案甲所需化验费用η的分布列为:

 η 10 18 24 30 36
 P $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{3}$
用方案甲平均需要化验费E(η)=$10×\frac{1}{6}+18×\frac{1}{6}+24×\frac{1}{6}+30×\frac{1}{6}+36×\frac{1}{3}$=$\frac{77}{3}$(元).
(3)由(2)知方案甲平均化验次数为E(ξ)=$1×\frac{1}{6}+2×\frac{1}{6}+3×\frac{1}{6}+4×\frac{1}{6}+5×\frac{1}{3}$=$\frac{10}{3}$,
设方案乙化验的次数为?,则?可能的取值为2,3,
P(?=2)=$\frac{1}{3}$,P(?=3)=1-$\frac{1}{3}=\frac{2}{3}$,
∴E(?)=$2×\frac{1}{3}+3×\frac{2}{3}$=$\frac{8}{3}$,
∴E(ξ)>E(?),
∴方案乙化验次数的期望值较小,可以尽快查找到感染冷库.

点评 本题考查概率的求法,考查离散型随机变量的分布列及数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在直角坐标系xOy中,射线OM的参数方程为$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数,t≥0),以O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ.
(Ⅰ)求射线OM的极坐标方程;
(Ⅱ)已知直线l的极坐标方程是2ρsin(θ+$\frac{π}{3}$)=3$\sqrt{3}$,射线OM与曲线C的交点为O、P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{bn}满足bn=3bn-1+2(n≥2),b1=1.数列{an}的前n项和为Sn,满足Sn=4an+2
(1)求证:{bn+1}是等比数列并求出数列{bn}的通项公式;
(2)求数列{an}的通项公式和前n项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a,b,c∈R,且$\frac{1}{1+{a}^{2}}$+$\frac{1}{1+4{b}^{2}}$+$\frac{1}{1+9{c}^{2}}$=1,则|6abc-1|的最小值为(  )
A.3$\sqrt{3}$+1B.2$\sqrt{2}$-1C.3$\sqrt{3}$-1D.2$\sqrt{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.由①正方形的对角线相等;②矩形的对角线相等;③正方形是矩形.写一个“三段论”形式的推理,则作为大前提、小前提和结论的依次为②③①(写序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若数列{an}的通项公式为an=(-1)n+1n,Sn是其前n项的和,则S100=-50.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.为了整顿电动车秩序,海口市考虑将对电动车闯红灯进行处罚.为了更好地了解情况,在骑车人中随机选取了200人进行调查,得到如表数据:
处罚金额x(单位:元)05101520
会闯红灯的人数y8050402010
(Ⅰ)现用以上数据所得频率约等于概率,若处罚10元和20元时,电动车闯红灯的概率差是多少?
(Ⅱ)如果从5种处罚金额中随机抽取2种不同的金额进行处罚.
①求这两种金额之和不低于20元的概率;
②若用X表示这两种金额之和,求X的数学期望和分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设Sn=23n+23n-3C${\;}_{n}^{1}$+23n-6C${\;}_{n}^{2}$+…+23C${\;}_{n}^{n-1}$+1,则S2016被5除所得的余数是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列函数的值域.
(1)y=$\frac{1}{{x}^{2}+2}$;
(2)y=$\frac{2x-3}{x+1}$;
(3)y=$\sqrt{-{x}^{2}+2x+1}$;
(4)y=2x-$\sqrt{x-1}$.

查看答案和解析>>

同步练习册答案