精英家教网 > 高中数学 > 题目详情
17.在直角坐标系xOy中,射线OM的参数方程为$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数,t≥0),以O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ.
(Ⅰ)求射线OM的极坐标方程;
(Ⅱ)已知直线l的极坐标方程是2ρsin(θ+$\frac{π}{3}$)=3$\sqrt{3}$,射线OM与曲线C的交点为O、P,与直线l的交点为Q,求线段PQ的长.

分析 (I)射线OM的参数方程为$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数,t≥0),化为普通方程:y=$\sqrt{3}$x,可知:射线OM与x轴的正半轴成60°的角,即可得出射线OM的极坐标方程.
(II)设P(ρ1,θ1),联立$\left\{\begin{array}{l}{{ρ}_{1}=2cos{θ}_{1}}\\{{θ}_{1}=\frac{π}{3}}\end{array}\right.$,解得P的极坐标.同理可得Q的极坐标,即可得出.

解答 解:(I)射线OM的参数方程为$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数,t≥0),化为普通方程:y=$\sqrt{3}$x,可知:射线OM与x轴的正半轴成60°的角,
可得:射线OM的极坐标方程为:$θ=\frac{π}{3}$.
(II)设P(ρ1,θ1),由$\left\{\begin{array}{l}{{ρ}_{1}=2cos{θ}_{1}}\\{{θ}_{1}=\frac{π}{3}}\end{array}\right.$,解得$\left\{\begin{array}{l}{{ρ}_{1}=1}\\{{θ}_{1}=\frac{π}{3}}\end{array}\right.$.
设Q(ρ2,θ2),由$\left\{\begin{array}{l}{{ρ}_{2}(si{n}_{{θ}_{2}}+\sqrt{3}cos{θ}_{2})=3\sqrt{3}}\\{{θ}_{2}=\frac{π}{3}}\end{array}\right.$,解得$\left\{\begin{array}{l}{{ρ}_{2}=3}\\{{θ}_{2}=\frac{π}{3}}\end{array}\right.$.
∴θ12,|PQ|=ρ21=2.

点评 本题考查了极坐标方程方程的应用、曲线的交点、参数方程化为普通房方程,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知过点(2,4)的直线l被圆C:x2+y2-2x-4y-5=0截得的弦长为6,则直线l的方程为x-2=0或3x-4y+10=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现作为条件,求若函数g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$+$\frac{1}{x-\frac{1}{2}}$,则g($\frac{1}{2017}$)+g($\frac{2}{2017}$)+g($\frac{3}{2017}$)+…+g($\frac{2016}{2017}$)=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.定义max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a-b}\end{array}\right.$,若实数x,y满足$\left\{\begin{array}{l}{-1≤x≤1}\\{-1≤y≤1}\end{array}\right.$,则max{|2x+1|,|x-2y+5|}的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列各式中最小值为2的是(  )
A.$\frac{{{x^2}+5}}{{\sqrt{{x^2}+4}}}$B.$\frac{b}{a}$+$\frac{a}{b}$C.2x+$\frac{1}{2^x}$D.cosx+$\frac{1}{cosx}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.“菱形的对角线互相垂直且平分,AC、BD是菱形ABCD的对角线,所以AC、BD互相垂直且平分.”以上推理的大前提是菱形对角线互相垂直且平分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,在其定义域内既是奇函数又是增函数的是(  )
A.y=$\frac{1}{x}$B.y=x2C.y=x3D.y=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在三棱锥P-ABC中,PA=PC=5,PB=4,AB=BC=2$\sqrt{3}$,∠ACB=30°.
(1)求证:AC⊥PB;
(2)求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.2014年12月初,南京查获了一批问题牛肉,滁州市食药监局经民众举报获知某地6个储存牛肉的冷库有1个冷库牛肉被病毒感染,需要通过对库存牛肉抽样化验病毒DNA来确定感染牛肉,以免民众食用有损身体健康.下面是两种化验方案:
方案甲:逐个化验样品,直到能确定感染冷库为止.
方案乙:将样品分为两组,每组三个,并将它们混合在一起化验,若存在病毒DNA,则表明感染牛肉在这三个样品当中,然后逐个化验,直到确定感染冷库为止;若结果不含病毒DNA,则在另外一组样品中逐个进行化验.
(1)求依据方案乙所需化验恰好为2次的概率.
(2)首次化验化验费为10元,第二次化验化验费为8元,第三次及其以后每次化验费都是6元,列出方案甲所需化验费用的分布列,并估计用方案甲平均需要化验费多少元?
(3)试比较两种方案,估计哪种方案有利于尽快查找到感染冷库.说明理由.

查看答案和解析>>

同步练习册答案