精英家教网 > 高中数学 > 题目详情
5.定义max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a-b}\end{array}\right.$,若实数x,y满足$\left\{\begin{array}{l}{-1≤x≤1}\\{-1≤y≤1}\end{array}\right.$,则max{|2x+1|,|x-2y+5|}的最小值为2.

分析 分析可得当x,y满足①当-$\frac{1}{2}$≤x≤1,-1≤y≤1时,②当-1≤x<-$\frac{1}{2}$,-1≤y≤1时,从而化简max{|2x+1|,|x-2y+5|}=5+x-2y,作出可行域,平移直线l0:x-2y=0,从而求最小值.

解答 解:实数x,y满足$\left\{\begin{array}{l}{-1≤x≤1}\\{-1≤y≤1}\end{array}\right.$时,
可得①当-$\frac{1}{2}$≤x≤1,-1≤y≤1时,
0≤2x+1≤3,$\frac{5}{2}$≤x-2y+5≤8,
则max{|2x+1|,|x-2y+5|}=max{2x+1,x-2y+5},
由x-2y+5-(2x+1)=-x-2y+4∈[1,$\frac{11}{2}$],
即有max{|2x+1|,|x-2y+5|}=x-2y+5;
②当-1≤x<-$\frac{1}{2}$,-1≤y≤1时,
-1≤2x+1<0,2≤x-2y+5≤$\frac{13}{2}$,
显然|2x+1|<|x-2y+5|,
即有max{|2x+1|,|x-2y+5|}=x-2y+5.
综上可得max{|2x+1|,|x-2y+5|}=5+x-2y,
作出x,y满足的可行域,如图.
画出直线l0:x-2y=0,
平移l0,当经过点(-1,1)时,取得最小值.
故当x=-1,y=1时,
5+x-2y有最小值2,
故答案为:2.

点评 本题考查了分段函数,绝对值函数及分类讨论和数形结合的思想应用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知过点M(-3,-3)的直线l被圆x2+y2+4y-21=0所截得的弦长为8,则直线l的方程为4x+3y+21=0或x=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设△ABC的内角A,B,C所对的边分别是a,b,c,且(2b-$\sqrt{3}$c)cosA=$\sqrt{3}$acosC,则角A的大小为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知直线l经过圆C:x2+y2-2x-4y=0的圆心,且坐标原点到直线l的距离为$\sqrt{5}$,则直线l的方程为(  )
A.x+2y+5=0B.2x+y-5=0C.x+2y-5=0D.x-2y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.求值arctan(cot$\frac{π}{3}$)=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知圆C:(x-1)2+(y-3)2=2被直线y=3x+b所截得的线段的长度等于2,则b等于(  )
A.±$\sqrt{5}$B.±$\sqrt{10}$C.±2$\sqrt{5}$D.±$\sqrt{30}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在直角坐标系xOy中,射线OM的参数方程为$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数,t≥0),以O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ.
(Ⅰ)求射线OM的极坐标方程;
(Ⅱ)已知直线l的极坐标方程是2ρsin(θ+$\frac{π}{3}$)=3$\sqrt{3}$,射线OM与曲线C的交点为O、P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在极坐标系中,已知直线方程为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,则点A(2,$\frac{7π}{4}$)到这条直线的距离为(  )
A.$\sqrt{2}$B.2-$\frac{1}{\sqrt{2}}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a,b,c∈R,且$\frac{1}{1+{a}^{2}}$+$\frac{1}{1+4{b}^{2}}$+$\frac{1}{1+9{c}^{2}}$=1,则|6abc-1|的最小值为(  )
A.3$\sqrt{3}$+1B.2$\sqrt{2}$-1C.3$\sqrt{3}$-1D.2$\sqrt{2}$+1

查看答案和解析>>

同步练习册答案