精英家教网 > 高中数学 > 题目详情
14.在极坐标系中,已知直线方程为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,则点A(2,$\frac{7π}{4}$)到这条直线的距离为(  )
A.$\sqrt{2}$B.2-$\frac{1}{\sqrt{2}}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{4}$

分析 把直线极坐标方程化为直角坐标方程,点A的坐标化为直角坐标,利用点到直线的距离公式即可得出.

解答 解:直线方程为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,展开化为:$\frac{\sqrt{2}}{2}$(ρsinθ+ρcosθ)=$\frac{\sqrt{2}}{2}$,可得直角坐标方程为:x+y=1.
则点A(2,$\frac{7π}{4}$)化为A$(2cos\frac{7π}{4},2sin\frac{7π}{4})$,即A$(\sqrt{2},-\sqrt{2})$.
∴点A到这条直线的距离=$\frac{|\sqrt{2}-\sqrt{2}-1|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.
故选:C.

点评 本题考查了极坐标方程化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知圆C:x2+y2=3,从点A(-2,0)观察点B(2,a),要使视线不被圆C挡住,则a的取值范围是(  )
A.(-∞,-$\frac{4\sqrt{3}}{3}$)∪($\frac{4\sqrt{3}}{3}$,+∞)B.(-∞,-2)∪(2,+∞)C.(-∞,2$\sqrt{3}$)∪(2$\sqrt{3}$,+∞)D.(-∞,-4$\sqrt{3}$)∪(4$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.定义max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a-b}\end{array}\right.$,若实数x,y满足$\left\{\begin{array}{l}{-1≤x≤1}\\{-1≤y≤1}\end{array}\right.$,则max{|2x+1|,|x-2y+5|}的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.“菱形的对角线互相垂直且平分,AC、BD是菱形ABCD的对角线,所以AC、BD互相垂直且平分.”以上推理的大前提是菱形对角线互相垂直且平分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,在其定义域内既是奇函数又是增函数的是(  )
A.y=$\frac{1}{x}$B.y=x2C.y=x3D.y=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,$\frac{cosA}{cosB}$=$\frac{a}{b}$,则△ABC一定是(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在三棱锥P-ABC中,PA=PC=5,PB=4,AB=BC=2$\sqrt{3}$,∠ACB=30°.
(1)求证:AC⊥PB;
(2)求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若△ABC中,sinA•cosB<0,则角B是钝角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax2+$\frac{1}{x}{\;}$(a∈R).
(1)判断f(x)奇偶性;
(2)当f(x)在(1,+∞)递增,求a的取值范围.

查看答案和解析>>

同步练习册答案