精英家教网 > 高中数学 > 题目详情
19.在△ABC中,$\frac{cosA}{cosB}$=$\frac{a}{b}$,则△ABC一定是(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形

分析 利用正弦定理化边为角,然后由差角正弦公式可化简,进而可得答案.

解答 解:由正弦定理,得$\frac{cosA}{cosB}$=$\frac{a}{b}$,即为$\frac{cosA}{cosB}$=$\frac{sinA}{sinB}$,
∴cosAsinB=sinAcosB,
∴sin(A-B)=0,则A-B=0,即A=B,
∴△ABC为等腰三角形,
故选:A.

点评 本题主要考查了正弦定理、两角差的正弦函数公式在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.一个几何体的三视图如图所示,则该几何体的侧视图的面积为(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知圆C:(x-1)2+(y-3)2=2被直线y=3x+b所截得的线段的长度等于2,则b等于(  )
A.±$\sqrt{5}$B.±$\sqrt{10}$C.±2$\sqrt{5}$D.±$\sqrt{30}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图所示将若干个点摆成三角形图案,每条边(色括两个端点)有n(n>l,n∈N*)个点,相应的图案中总的点数记为an,则$\frac{9}{{{a_2}{a_3}}}$+$\frac{9}{{{a_3}{a_4}}}$+$\frac{9}{{{a_4}{a_5}}}$+…+$\frac{9}{{{a_{2016}}{a_{2017}}}}$=$\frac{2015}{2016}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在极坐标系中,已知直线方程为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,则点A(2,$\frac{7π}{4}$)到这条直线的距离为(  )
A.$\sqrt{2}$B.2-$\frac{1}{\sqrt{2}}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设x是实数,定义[x]不超过实数x的最大整数,如:[2]=2,[2.3]=2,[-2.3]=-3,记函数f(x)=x-[x],函数g(x)=[3x+1]+$\frac{1}{2}$给出下列命题:
①函数f(x)在[-$\frac{1}{6}$,$\frac{2}{3}$]上有最小值,无最大值;       
②f(-$\frac{1}{2}$)=f($\frac{1}{2}$)且f(x)为偶函数;
③若g(x)-2x=0的解集为M,则集合M的所有元素之和为-2;
④设an=f($\frac{201{2}^{n}}{2013}$),则当n为偶数时$\sum_{i=1}^{n}$ai=$\frac{n}{2}$,当n为奇数时,则$\sum_{i=1}^{n}$ai=$\frac{n-1}{2}$+$\frac{2012}{2013}$.
其中正确的命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示.则f(x)=sin($\frac{π}{4}$x+$\frac{π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数y=$\frac{3sinx+1}{3sinx+2}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在极坐标系中,点(2,$\frac{π}{3}$)到直线ρ(cosθ+$\sqrt{3}$sinθ)=6的距离为(  )
A.4B.3C.2D.1

查看答案和解析>>

同步练习册答案