精英家教网 > 高中数学 > 题目详情
7.如图所示将若干个点摆成三角形图案,每条边(色括两个端点)有n(n>l,n∈N*)个点,相应的图案中总的点数记为an,则$\frac{9}{{{a_2}{a_3}}}$+$\frac{9}{{{a_3}{a_4}}}$+$\frac{9}{{{a_4}{a_5}}}$+…+$\frac{9}{{{a_{2016}}{a_{2017}}}}$=$\frac{2015}{2016}$.

分析 根据图象的规律可得出通项公式an,根据数列{$\frac{9}{{a}_{n-1}{a}_{n}}$}的特点可用列项法求其前n项和的公式,而则$\frac{9}{{{a_2}{a_3}}}$+$\frac{9}{{{a_3}{a_4}}}$+$\frac{9}{{{a_4}{a_5}}}$+…+$\frac{9}{{{a_{2016}}{a_{2017}}}}$是前2015项的和,代入前n项和公式即可得到答案.

解答 解:每个边有n个点,把每个边的点数相加得3n,这样角上的点数被重复计算了一次,故第n个图形的点数为3n-3,即an=3n-3,
令Sn=$\frac{9}{{{a_2}{a_3}}}$+$\frac{9}{{{a_3}{a_4}}}$+$\frac{9}{{{a_4}{a_5}}}$+…+$\frac{9}{{a}_{n-1}{a}_{n}}$=$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{(n-1)n}$=$\frac{n-1}{n}$
$\frac{9}{{{a_2}{a_3}}}$+$\frac{9}{{{a_3}{a_4}}}$+$\frac{9}{{{a_4}{a_5}}}$+…+$\frac{9}{{{a_{2016}}{a_{2017}}}}$+=$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{2015×2016}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{2015}$$-\frac{1}{2016}$=$\frac{2015}{2016}$,
故答案为:$\frac{2015}{2016}$.

点评 本题主要考查简单的和清推理,求等差数列的通项公式和用裂项法对数列进行求和问题,同时考查了计算能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.过点(2,0)引直线l与圆x2+y2=2相交于A,B两点,O为坐标原点,当△AOB面积取最大值时,直线l的斜率为(  )
A.$\frac{\sqrt{3}}{3}$B.±$\sqrt{3}$C.±$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)=$\frac{1}{3}$ax3-2x2+cx在R上单调递增且ac≤4,则$\frac{a}{{c}^{2}+4}$+$\frac{c}{{a}^{2}+4}$的最小值为(  )
A.0B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.过原点向圆x2+y2-2x-4y+4=0引切线,则切线方程为y=$\frac{3}{4}$x或x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.“菱形的对角线互相垂直且平分,AC、BD是菱形ABCD的对角线,所以AC、BD互相垂直且平分.”以上推理的大前提是菱形对角线互相垂直且平分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为3$\sqrt{15}$,b-c=2,cosA=-$\frac{1}{4}$,则a的值为(  )
A.64B.$4\sqrt{15}$C.8D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,$\frac{cosA}{cosB}$=$\frac{a}{b}$,则△ABC一定是(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若当-π<α<0时,函数y=cos(2x+α)(x∈R)是奇函数,则当x∈[0,π]时,函数y=-sin(2x+$\frac{1}{3}$α)的增区间是(  )
A.[0,$\frac{π}{3}}$]B.[$\frac{5π}{6}$,π]C.[$\frac{π}{3}$,$\frac{5π}{6}}$]D.以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AC⊥BC,BC=C1C=AC=2,D是A1C1上的一点,E是A1B1的中点,C1D=kA1C1
(Ⅰ) 当k为何值时,B,C,D,E四点共面;
(Ⅱ) 在(Ⅰ)的条件下,求四棱锥A-BCDE的体积.

查看答案和解析>>

同步练习册答案