精英家教网 > 高中数学 > 题目详情
17.在三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AC⊥BC,BC=C1C=AC=2,D是A1C1上的一点,E是A1B1的中点,C1D=kA1C1
(Ⅰ) 当k为何值时,B,C,D,E四点共面;
(Ⅱ) 在(Ⅰ)的条件下,求四棱锥A-BCDE的体积.

分析 (Ⅰ)由题意可知,k=$\frac{1}{2}$时,B,C,D,E四点共面.然后利用三角形中位线定理可知DE∥B1C1,再由B1C1∥BC,得DE∥BC,由此说明B,C,D,E四点共面;
(Ⅱ)在三棱锥A-BCD中,利用等积法求出点A到平面BCDE的距离h,然后代入四棱锥的体积公式求得答案.

解答 解:(Ⅰ)当k=$\frac{1}{2}$时,B,C,D,E四点共面.
事实上,若k=$\frac{1}{2}$,则D是A1C1的中点,
又E是A1B1的中点,∴DE∥B1C1
又B1C1∥BC,∴DE∥BC,则B,C,D,E四点共面;
(Ⅱ) 在(Ⅰ)的条件下,即D为A1C1的中点,
又A1A⊥平面ABC,A1ACC1是矩形,
此时,$CD=\sqrt{{C_1}{C^2}+{C_1}{D^2}}=\sqrt{{2^2}+{1^2}}=\sqrt{5}$,
又A1A⊥平面ABC,∴BC⊥A1A,又BC⊥AC,
∴BC⊥平面ACD,由VA-BCD=VB-ACD
设点A到平面BCDE的距离h,则$\frac{1}{3}•\frac{1}{2}BC•CD•h=\frac{1}{3}•\frac{1}{2}BC•AC•{A_1}A$,
∴$h=\frac{AC•{A_1}A}{CD}=\frac{2•2}{{\sqrt{5}}}=\frac{{4\sqrt{5}}}{5}$,
则${V_{A-BCDE}}=\frac{1}{3}•\frac{1}{2}•({BC+DE})•CD•h$=$\frac{1}{6}•({2+1})\sqrt{5}•\frac{{4\sqrt{5}}}{5}=2$.

点评 本题考查线面平行的判断,考查了棱锥体积的求法,训练了等积法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.如图所示将若干个点摆成三角形图案,每条边(色括两个端点)有n(n>l,n∈N*)个点,相应的图案中总的点数记为an,则$\frac{9}{{{a_2}{a_3}}}$+$\frac{9}{{{a_3}{a_4}}}$+$\frac{9}{{{a_4}{a_5}}}$+…+$\frac{9}{{{a_{2016}}{a_{2017}}}}$=$\frac{2015}{2016}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数y=$\frac{3sinx+1}{3sinx+2}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ.
(Ⅰ)求x<2且y>1的概率;
(Ⅱ)求随机变量ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若数列{an}的通项公式为an=(-1)n+1n,Sn是其前n项的和,则S100=-50.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.一个盒中有12个乒乓球,其中9个新的(未用过的球称为新球),3个旧的(新球用一次即称为旧球).现从盒子中任取3个球来用,用完后装回盒中,设随机变量X表示此时盒中旧球个数.
(1)求盒中新球仍是9个的概率;
(2)求随机变量X的概率分布.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在极坐标系中,点(2,$\frac{π}{3}$)到直线ρ(cosθ+$\sqrt{3}$sinθ)=6的距离为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,△ACD是正三角形,BD垂直平分AC,垂足为M,∠ABC=120°,PA=AB=1,PD=2,N为PD的中点.
(1)求证:AD⊥平面PAB;
(2)求证:CN∥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某客运公司用A,B两种型号的车辆承担甲、乙两地的长途客运业务,每车每天往返一次.A、B两种型号的车辆的载客量分别为32人和48人,从甲地到乙地的营运成本依次为1500元/辆和2000元/辆.公司拟组建一个不超过21辆车的车队,并要求B种型号的车不多于A种型号车5辆.若每天从甲地运送到乙地的旅客不少于800人,为使公司从甲地到乙地的营运成本最小,应配备A、B两种型号的车各多少辆?并求出最小营运成本.

查看答案和解析>>

同步练习册答案