分析 求出圆的标准方程,求出圆心和半径,根据直线和圆相切的等价条件进行求解即可.
解答 解:圆的标准方程为(x-1)2+(y-2)2=1,
则圆心为(1,2),半径R=1,
若切线斜率k不存在,即x=0时,满足条件;
若切线斜率k存在,则设切线方程为y=kx,
即kx-y=0,
圆心到直线的距离d=$\frac{|k-2|}{\sqrt{1{+k}^{2}}}$=1,
得|k-2|=$\sqrt{1{+k}^{2}}$,
平方得k2-4k+4=1+k2,
即k=$\frac{3}{4}$,此时切线方程为y=$\frac{3}{4}$x,
综上,切线方程为:y=$\frac{3}{4}$x或x=0.
故答案为:y=$\frac{3}{4}$x或x=0.
点评 本题主要考查直线和圆位置关系的应用,根据直线和圆相切与半径之间的关系是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | [$\frac{1}{5}$,1] | C. | (1,+∞)∪(-∞,$\frac{1}{5}$) | D. | R |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 线性相关关系较强,b的值为3.25 | B. | 线性相关关系较强,b的值为0.83 | ||
| C. | 线性相关关系较强,b的值为-0.87 | D. | 线性相关关系太弱,无研究价值 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ±$\sqrt{5}$ | B. | ±$\sqrt{10}$ | C. | ±2$\sqrt{5}$ | D. | ±$\sqrt{30}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分值 | [0,10) | [10,20) | [20,30) | [30,40) |
| 场数 | 10 | 20 | 40 | 30 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com