精英家教网 > 高中数学 > 题目详情
10.已知圆C:(x-1)2+(y-3)2=2被直线y=3x+b所截得的线段的长度等于2,则b等于(  )
A.±$\sqrt{5}$B.±$\sqrt{10}$C.±2$\sqrt{5}$D.±$\sqrt{30}$

分析 先求出圆C的圆心C(1,3),半径r=$\sqrt{2}$,再求出圆心C(1,3)到直线y=3x+b的距离d,由此根据圆C:(x-1)2+(y-3)2=2被直线y=3x+b所截得的线段的长度等于2,由勾股定理,能求出b的值.

解答 解:圆C:(x-1)2+(y-3)2=2的圆心C(1,3),半径r=$\sqrt{2}$,
圆心C(1,3)到直线y=3x+b的距离d=$\frac{|3-3+b|}{\sqrt{9+1}}$=$\frac{|b|}{\sqrt{10}}$,
∵圆C:(x-1)2+(y-3)2=2被直线y=3x+b所截得的线段的长度等于2,
∴由勾股定理,得:${r}^{2}={d}^{2}+(\frac{2}{2})^{2}$,
即2=$\frac{{b}^{2}}{10}$+1,解得b=$±\sqrt{10}$.
故选:B.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意圆的性质和点到直线的距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.在平面直角坐标系xOy中,已知直线l:x+y+a=0与点A(0,2),若直线l上存在点M满足|MA|2+|MO|2=10(O为坐标原点),则实数a的取值范围是(  )
A.[-2$\sqrt{2}$-1,2$\sqrt{2}$-1]B.[-2$\sqrt{2}$-1,2$\sqrt{2}$-1)C.[-$\sqrt{5}$-1,$\sqrt{5}$-1]D.[-$\sqrt{5}$-1,$\sqrt{5}$-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}满足a1=2,a2=3,an+2=|an+1-an|,则a2016=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)=$\frac{1}{3}$ax3-2x2+cx在R上单调递增且ac≤4,则$\frac{a}{{c}^{2}+4}$+$\frac{c}{{a}^{2}+4}$的最小值为(  )
A.0B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.定义max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a-b}\end{array}\right.$,若实数x,y满足$\left\{\begin{array}{l}{-1≤x≤1}\\{-1≤y≤1}\end{array}\right.$,则max{|2x+1|,|x-2y+5|}的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.过原点向圆x2+y2-2x-4y+4=0引切线,则切线方程为y=$\frac{3}{4}$x或x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.“菱形的对角线互相垂直且平分,AC、BD是菱形ABCD的对角线,所以AC、BD互相垂直且平分.”以上推理的大前提是菱形对角线互相垂直且平分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,$\frac{cosA}{cosB}$=$\frac{a}{b}$,则△ABC一定是(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这五个球放入5个盒子内,没有一个盒子空着,但球的编号与盒子编号不全相同,有119种投放方法.

查看答案和解析>>

同步练习册答案