| A. | ±$\sqrt{5}$ | B. | ±$\sqrt{10}$ | C. | ±2$\sqrt{5}$ | D. | ±$\sqrt{30}$ |
分析 先求出圆C的圆心C(1,3),半径r=$\sqrt{2}$,再求出圆心C(1,3)到直线y=3x+b的距离d,由此根据圆C:(x-1)2+(y-3)2=2被直线y=3x+b所截得的线段的长度等于2,由勾股定理,能求出b的值.
解答 解:圆C:(x-1)2+(y-3)2=2的圆心C(1,3),半径r=$\sqrt{2}$,
圆心C(1,3)到直线y=3x+b的距离d=$\frac{|3-3+b|}{\sqrt{9+1}}$=$\frac{|b|}{\sqrt{10}}$,
∵圆C:(x-1)2+(y-3)2=2被直线y=3x+b所截得的线段的长度等于2,
∴由勾股定理,得:${r}^{2}={d}^{2}+(\frac{2}{2})^{2}$,
即2=$\frac{{b}^{2}}{10}$+1,解得b=$±\sqrt{10}$.
故选:B.
点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意圆的性质和点到直线的距离公式的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | [-2$\sqrt{2}$-1,2$\sqrt{2}$-1] | B. | [-2$\sqrt{2}$-1,2$\sqrt{2}$-1) | C. | [-$\sqrt{5}$-1,$\sqrt{5}$-1] | D. | [-$\sqrt{5}$-1,$\sqrt{5}$-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等腰三角形 | B. | 直角三角形 | C. | 等腰直角三角形 | D. | 等边三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com