精英家教网 > 高中数学 > 题目详情

【题目】对于定义在上的函数,若存在距离为的两条直线,使得对任意的都有,则称函数有一个宽为的通道.给出下列函数:①;②;③;④.其中在区间上通道宽度为1的函数由__________ (写出所有正确的序号).

【答案】①②③.

【解析】

分析:对于①,求出函数的值域,判断即可;对于②,从函数图象入手,寻找符合条件的直线即可;对于③,利用导数研究函数的单调性,即可得其值域,判断即可;对于④,求出函数的值域,并根据导数的几何意义求出函数的切线方程,从而可判断.

详解对于①,故在上有一个宽度为1的通道,两条直线可取

对于②,表示的是双曲线在第一象限的部分,双曲线的渐近线为故函数满足满足在上有一个宽度为1的通道

对于③,,当,且上的值域为,满足故该函数满足在上有一个宽度为1的通道

对于④,之间的距离为又因为为增函数的切点为解得则与平行的切线为因为相切故不存在两条直线.

故答案为①②③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形, 的中点。

1)证明: 平面;

2)设 ,三棱锥的体积 ,求A到平面PBC的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,水平的广场上有一盏路灯挂在高的电线杆顶上,记电线杆的底部为点.把路灯看作一个点光源,身高的女孩站在离点的点处,回答下面的问题.

1)若女孩以为半径绕着电线杆走一个圆圈,人影扫过的是什么图形,求这个图形的面积;

2)若女孩向点前行到达点,然后从点出发沿着以为对角线的正方形走一圈,画出女孩走一圈时头顶影子的轨迹,说明轨迹的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(个月)和市场占有率()的几组相关对应数据:

1

2

3

4

5

0.02

0.05

0.1

0.15

0.18

(1)根据上表中的数据,用最小二乘法求出关于的线性回归方程;

(2)根据上述回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个月,该款旗舰机型市场占有率能超过(精确到月).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某机械厂要将长,宽的长方形铁皮进行裁剪.已知点的中点,点在边上,裁剪时先将四边形沿直线翻折到处(点分别落在直线下方点处,交边于点,再沿直线裁剪.

1)当时,试判断四边形的形状,并求其面积;

2)若使裁剪得到的四边形面积最大,请给出裁剪方案,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分,设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.

1)求开始第4次发球时,甲、乙的比分为12的概率;

2表示开始第4次发球时乙的得分,求的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在多面体底面是梯形四边形是正方形..

(1)求证平面平面

(2)为线段上一点试问在线段上是否存在一点使得平面,若存在试指出点的位置若不存在说明理由?

(3)(2)的条件下求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新鲜的荔枝很好吃,但摘下后容易变黑,影响卖相。某超市计划每年六月从精准扶贫户中订购荔枝,每天进货量相同且每公斤20元,当日18时前售价为每公斤24元,18时后以每公斤16元的价格销售完毕。根据往年情况,每天的荔枝需求量与当天平均气温有关,如下表表示:

平均气温t(摄氏度)

需求量n(公斤)

50

100

200

300

为了确定今年6月1日6月30日的日购数量,统计了前三年六月各天的平均气温,得到如下的频数分布表:

平均气温

天数

2

16

36

25

7

4

(1)假设该超市在以往三年内的六月每天进货100公斤,求荔枝为超市带来的日平均利润(结果取整数).

(2)若今年该超市进货量为200公斤,以记录的各需求量的频率作为相应的概率,求当天超市不亏损的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数,函数.

(1)当时,求函数的零点个数;

(2)若函数与函数的图象分别位于直线的两侧,求的取值集合

(3)对于,求的最小值.

查看答案和解析>>

同步练习册答案