精英家教网 > 高中数学 > 题目详情

已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为(       )

A.-1<a<2        B.-3<a<6         C.a<-1或a>2     D.a<-3或a>6

 

【答案】

D  

【解析】

试题分析:因为f(x)=x3+ax2+(a+6)x+1有极大值和极小值,所以方程由不等实根,即,解得a<-3或a>6

,故选D。

考点:本题主要考查导数计算,函数极值的概念及求法,一元二次不等式解法。

点评:典型题,利用导数求函数的极值,是高考常见题目。求极值的步骤:计算导数、求驻点、讨论驻点附近导数的正负、确定极值。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x3+
3x
,求函数f(x)的单调区间及其极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+
1
2
mx2-2m2x-4
(m为常数,且m>0)有极大值-
5
2

(Ⅰ)求m的值;
(Ⅱ)求曲线y=f(x)的斜率为2的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2+bx+c在x=1与x=-
23
时都取得极值.
(Ⅰ)求a,b的值;
(Ⅱ)若x∈[-1,2],都有f(x)-c2<0成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求函数y=
x+3
x2+3
的导数
(2)已知f(x)=x3+4cosx-sin
π
2
,求f'(x)及f′(
π
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=-x3+ax2-4
 (a∈R)
,f′(x)是f(x)的导函数.
(1)当a=2时,求函数f(x)的单调区间;
(2)当a=2时,对任意的m∈[-1,1],n∈[-1,1],求f(m)+f'(n)的最小值;
(3)若?x0∈(0,+∞),使f(x)>0,求a取值范围.

查看答案和解析>>

同步练习册答案