分析 (Ⅰ)利用(a1+12)2=a1(a1+72)计算可知首项a1=3,进而可得结论;
(Ⅱ)通过裂项可知bn=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),并项相加即得结论.
解答 解:(Ⅰ)∵等差数列{an}的公差为2,
∴a7=a1+12,a37=a1+72,
又∵a1,a7,a37依次构成等比数列,
∴(a1+12)2=a1(a1+72),
解得a1=3,
∴数列{an}的通项an=3+2(n-1)=2n+1,
Sn=$\frac{n(3+2n+1)}{2}$=n(n+2);
(Ⅱ)∵Sn=n(n+2),
∴bn=$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
∴Tn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n-1}$-$\frac{1}{n+1}$+$\frac{1}{n}$-$\frac{1}{n+2}$)
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)
=$\frac{3}{4}$-$\frac{1}{2(n+1)}$-$\frac{1}{2(n+2)}$.
点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\stackrel{∧}{y}$=-2x+9.5 | B. | $\stackrel{∧}{y}$=-0.3x+4.2 | C. | $\stackrel{∧}{y}$=0.4x+2.3 | D. | $\stackrel{∧}{y}$=2x-2.4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 文科 | 理科 | 总计 | |
| 优秀 | |||
| 非优秀 | |||
| 总计 | 50 | 50 | 100 |
| P(K2>k) | 0.10 | 0.025 | 0.010 |
| K2 | 2.706 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
| 年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| $\overline x$ | $\overline y$ | $\overline w$ | $\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}$ | $\sum_{i=1}^n{{{({w_i}-\overline w)}^2}}$ | $\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}$ | $\sum_{i=1}^n{({w_i}-\overline w)({y_i}-\overline y)}$ |
| 46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com