精英家教网 > 高中数学 > 题目详情
某少数民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小三角形构成,小三角形数越多刺绣越漂亮,现按同样的规律刺绣(小三角形的摆放规律相同),设第n个图形包含f(n)个小三角形.由图形知f(1)=1,f(2)=3,f(3)=6
(1)求出f(5);
(2)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求出f(n)的表达式.
考点:归纳推理,进行简单的合情推理
专题:简易逻辑
分析:(1)先分别观察给出图形中三角形的个数为:1,1+2,1+2+3,…可得f(5);
(2)由(1)中数据总结一般性的规律,将一般性的数列转化为特殊的数列再求解.
解答: 解:(1)∵f(1)=1,
f(2)=1+2=3,
f(3)=1+2+3=6
f(4)=1+2+3+4=10
∴f(5)=1+2+3+4+5=15,
(2)由(1)中,
f(2)-f(1)=2,
f(3)-f(2)=3,
f(4)-f(3)=4,
f(5)-f(4)=5,

归纳可得f(n+1)-f(n)=n+1,
∴f(n)=f(n-1)+n=f(n-2)+n+(n-1)=…=n+(n-1)+…+2+1=
n(n+1)
2
点评:本题主要考查归纳推理,其基本思路是先分析具体,观察,总结其内在联系,得到一般性的结论,若求解的项数较少,可一直推理出结果,若项数较多,则要得到一般求解方法,再求具体问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC与△DBC都是边长为2的等边三角形,且平面ABC⊥平面DBC,过点A作PA⊥平面ABC,且AP=2
3

(1)求证:PA∥平面DBC;
(2)求直线PD与平面DBC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax-a2lnx(a≠0)有两个零点.
(Ⅰ)求实数a的取值范围;
(Ⅱ)对于任意两个不相等的x1,x2∈(0,+∞),存在x0使得f′(x0)=
f(x1)-f(x2)
x1-x2
,求证:
x1x2
<x0
x1+x2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距为2
2
,且过点A(
3
2
1
2
).
(Ⅰ)求椭圆的方程;
(Ⅱ)已知l:y=kx-1,是否存在k使得点A关于l的对称点B(不同于点A)在椭圆C上?若存在求出此时直线l的方程,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某部队驻扎在青藏高原上,那里海拔高、寒冷缺氧、四季风沙、没有新鲜蔬菜,生活条件极为艰苦.但战士们不计个人得失,扎根风雪高原,以钢铁般的意志,自力更生,克服恶劣的自然环境.该部队现计划建造一个室内面积为800m2的矩形蔬菜温室,在温室内,与左、右两侧及后侧的内墙各保留1m宽的通道,与前侧内墙保留3m宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二项式(x2+
1
2
x
n(n∈N*)展开式中,前三项的二项式系数和为56,求展开式中的常数项;
(2)(1-2x)2014=a0+a1x+a2x2+…+a2014x2014(x∈R)
①求
a1
2
+
a2
22
+
a3
23
+…+
a2014
22014
的值;
②求a1+2a2+3a3+4a4+…+2014a2014的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知ABCD为平行四边形,∠A=60°,AF=2FB,AB=6,点E在CD上,EF∥BC,BD⊥AD,BD与EF相交于N.现将四边形ADEF沿EF折起,折后如图满足平面ABCD⊥平面BCEF.
(Ⅰ)求证:BD⊥EF;
(Ⅱ)求三棱锥D-NBF的体积;

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=
2
2
AD.
(1)求证:面PAB⊥平面PDC; 
(2)求二面角B-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下是某地搜集到的新房屋的销售价格y(万元)和房屋的面积x(m2)的数据,若由资料可知y对x呈线性相关关系.
x 80 90 100 110 120
y 48 52 63 72 80
试求:(1)线性回归方程;
(2)根据(1)的结果估计当房屋面积为150m2时的销售价格.
参考公式:b=
n
i=1
xiyi-n
x
y
n
i=1
x
2
i
-n
x
2
=
n
i=1
(xi-
x
)(yi-
y
)
n
i=1
(xi-
x
)2
=
Sxy
S
2
X

查看答案和解析>>

同步练习册答案