精英家教网 > 高中数学 > 题目详情
4.若数列{an}满足关系:an+1=1+$\frac{1}{a_n}$,a1=1,则a3=(  )
A.$\frac{8}{5}$B.$\frac{3}{2}$C.$\frac{5}{3}$D.$\frac{13}{8}$

分析 由an+1=1+$\frac{1}{a_n}$,a1=1,可得a2=2,即可得出a3

解答 解:∵an+1=1+$\frac{1}{a_n}$,a1=1,则a2=1+1=2,
a3=1+$\frac{1}{2}$=$\frac{3}{2}$.
故选:B.

点评 本题考查了数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{x^2}{4}$+y2=1,A,B,C,D为椭圆上四个动点,且AC,BD相交于原点O,设A(x1,y1),B(x2,y2)满足$\frac{{{y_1}{y_2}}}{{\overrightarrow{OA}•\overrightarrow{OB}}}$=$\frac{1}{5}$.
(1)求证:$\overrightarrow{AB}$+$\overrightarrow{CD}$=$\overrightarrow{0}$;
(2)kAB+kBC的值是否为定值,若是,请求出此定值,并求出四边形ABCD面积的最大值,否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知命题p:2≤2,命题q:?x0∈R,使得x02+2x0+2=0,则下列命题是真命题的是(  )
A.¬pB.¬p∨qC.p∧qD.p∨q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12..已知定义域为R的函数f(x)=$\frac{a-{2}^{x}}{{2}^{x}+1}$是奇函数.
(1)求a的值;
(2)判断f(x)在(-∞,+∞)上的单调性.(直接写出答案,不用证明);
(3)若对于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x+$\frac{1}{x}$.
(I)判断函数的奇偶性,并加以证明;
(II)用定义证明f(x)在(0,1)上是减函数;
(III)函数f(x)在(-1,0)上的单调性如何?(直接写出答案,不要求写证明过程).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个圆锥的侧面展开图是一个$\frac{1}{4}$的圆面,则这个圆锥的表面积和侧面积的比是(  )
A.$\frac{5}{4}$B.$\frac{4}{3}$C.$\frac{3}{2}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题中正确命题的个数是(  )
①对于命题p:?x∈R,使得x2+x-1<0,则¬p:?x∈R,均有x2+x-1>0.
②p是q的必要不充分条件,则¬p是¬q的充分不必要条件
③命题“若x=y,则sinx=siny”的逆否命题为真命题.
④若p∨q为真命题,则p∧q为真命题.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列对应f是集合A到集合B的函数的是(  )
A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方
C.A=Z,B=Q,f:A中的数取倒数D.A=R,B={正实数},f:A中的数取绝对值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}的通项公式为an=n2-14n+65,则下列叙述正确的是(  )
A.20不是这个数列中的项B.只有第5项是20
C.只有第9项是20D.这个数列第5项、第9项都是20

查看答案和解析>>

同步练习册答案