精英家教网 > 高中数学 > 题目详情
12..已知定义域为R的函数f(x)=$\frac{a-{2}^{x}}{{2}^{x}+1}$是奇函数.
(1)求a的值;
(2)判断f(x)在(-∞,+∞)上的单调性.(直接写出答案,不用证明);
(3)若对于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.

分析 (1)f(x)为R上的奇函数,由f(0)=0即可求得a的值;
(2)分离出常数-1,即可判断f(x)在(-∞,+∞)上的单调性(直接写出答案,不用证明);
(3)利用奇函数f(x)在R上单调递减的性质,可将f(t2-2t)+f(2t2-k)<0恒成立转化为3t2-2t-k>0恒成立,利用△=4+12k<0,即可求k的取值范围.

解答 解:(1)因为f(x)为R上的奇函数
所以f(0)=0即$\frac{a-1}{2}$=0,
∴a=1  …(3分)
(2)f(x)=$\frac{1-{2}^{x}}{{2}^{x}+1}$=-1+$\frac{2}{{2}^{x}+1}$,在(-∞,+∞)上单调递减…(6分)
(3)f(t2-2t)+f(2t2-k)<0?f(t2-2t)<-f(2t2-k)=f(-2t2+k),
又f(x)=$\frac{1-{2}^{x}}{{2}^{x}+1}$在(-∞,+∞)上单调递减,
∴t2-2t>-2t2+k,
即3t2-2t-k>0恒成立,
∴△=4+12k<0,
∴k<-$\frac{1}{3}$.…(12分)(利用分离参数也可).

点评 本题考查函数恒成立问题,考查函数单调性、奇偶性的综合运用,考查等价转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax-2$\sqrt{4-{a}^{x}}$-1(a>1).
(1)若a=2,求函数f(x)的定义域、值域;
(2)若函数f(x)满足:对于任意x∈(-∞,1],都有f(x)+1≤0.试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知集合A={0,1,2},B={x|x2-x≤0},则A∩B={0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数  f(x)=$\left\{\begin{array}{l}{3x-1,x<1}\\{{2}^{x},x≥1}\end{array}\right.$   则f(f($\frac{2}{3}$))=(  )
A.3B.2C.5D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知p是曲线$\left\{\begin{array}{l}{x=2cosβ}\\{y=\sqrt{3}sinβ}\end{array}\right.$上一点,F1,F2是该曲线的两个焦点,若△F1PF2内角平分线的交点到三边上的距离为1,则$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的值为(  )
A.$\frac{3}{2}$B.$\frac{9}{4}$C.-$\frac{9}{4}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设集合M={(x,y)|3x-4y=$\frac{1}{27}$,x,y∈R},N={(x,y)|log${\;}_{\sqrt{3}}}$(x-y)=2,x,y∈R},则M∩N={(5,2)}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若数列{an}满足关系:an+1=1+$\frac{1}{a_n}$,a1=1,则a3=(  )
A.$\frac{8}{5}$B.$\frac{3}{2}$C.$\frac{5}{3}$D.$\frac{13}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+$\sqrt{3}$asinC=b+c.
(1)求A;
(2)若a=2,△ABC的面积为$\sqrt{3}$,判断此三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.△ABC的三个顶点坐标是A(0,1),B(2,1),C(3,4);
(1)△ABC的外接圆方程;
(2)若线段MN的端点N的坐标为(6,2),端点M在△ABC的外接圆的圆上运动,求线段MN的中点P的轨迹方程.

查看答案和解析>>

同步练习册答案