精英家教网 > 高中数学 > 题目详情
1.已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+$\sqrt{3}$asinC=b+c.
(1)求A;
(2)若a=2,△ABC的面积为$\sqrt{3}$,判断此三角形的形状.

分析 (1)由正弦定理,三角函数恒等变换的应用化简已知等式可得sin(A-30°)=$\frac{1}{2}$,结合范围0°<A<180°,进而可求A的值.
(2)利用三角形面积公式可求bc=4,进而利用余弦定理可求b+c=4,即可解得b=c=2=a,即可得解.

解答 解:(1)∵$sinAcosC-\sqrt{3}sinAsinC=sinB+sinC$
$⇒sinAcosC+\sqrt{3}sinAsinC=sin(A+C)+sinC$
$⇒\sqrt{3}sinAsinC-cosAsinC=sinC$.
∵sinC>0,
∴$\sqrt{3}sinA-cosA=1⇒sin(A-{30°})=\frac{1}{2}$.
∵0°<A<180°,
∴-30°<A-30°<150°,
∴A-30°=30°,可得:A=60°.
(2)$S=\frac{1}{2}bcsinA=\sqrt{3}?bc=4$,
由余弦定理得:a2=b2+c2-2bccosA=b2+c2-bc=(b+c)2-3bc,
⇒4=(b+c)2-12,
⇒b+c=4,
⇒b=c=2.
∵A=60°,
∴B=C=60°.
故△ABC是正三角形.

点评 本题主要考查了正弦定理,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,熟练应用相关公式是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知函数y=ax3+3x2+3x+3在x=1处取得极值,则a=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12..已知定义域为R的函数f(x)=$\frac{a-{2}^{x}}{{2}^{x}+1}$是奇函数.
(1)求a的值;
(2)判断f(x)在(-∞,+∞)上的单调性.(直接写出答案,不用证明);
(3)若对于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个圆锥的侧面展开图是一个$\frac{1}{4}$的圆面,则这个圆锥的表面积和侧面积的比是(  )
A.$\frac{5}{4}$B.$\frac{4}{3}$C.$\frac{3}{2}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题中正确命题的个数是(  )
①对于命题p:?x∈R,使得x2+x-1<0,则¬p:?x∈R,均有x2+x-1>0.
②p是q的必要不充分条件,则¬p是¬q的充分不必要条件
③命题“若x=y,则sinx=siny”的逆否命题为真命题.
④若p∨q为真命题,则p∧q为真命题.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知定义在(0,+∞)上的函数f(x)为增函数,且满足 f(2)=1,f(xy)=f(x)+f(y);
(1)求f(1)、f(4)的值;
(2)解关于x的不等式f(x)<2+f(x-3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列对应f是集合A到集合B的函数的是(  )
A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方
C.A=Z,B=Q,f:A中的数取倒数D.A=R,B={正实数},f:A中的数取绝对值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知a,b为正实数,向量$\overrightarrow{m}$=(a,a-4),向量$\overrightarrow{n}$=(b,1-b),若$\overrightarrow{m}$∥$\overrightarrow{n}$,则a+b最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若ab>0,ac<0,则直线ax+by+c=0不经过第三象限.

查看答案和解析>>

同步练习册答案